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Executive Summary 
 

Biometric Data Safeguarding Technologies Analysis and Best Practices International 
Biometric Group DRDC CSS CR 2011-29 December 2011 
 

Background 
 
This document is the Study Report for PSTP 02-0351BIO, Biometric Data Safeguarding Technologies Analysis 
and Best Practices. One of the main goals of the Public Security Technical Program (PSTP) Biometrics 
Community of Practice is to evaluate, analyze, and implement biometric technologies that enhance national 
capabilities in access control, identity verification, and e-Commerce security in a manner that is consistent with 
Canadian laws and acts. This is done in collaboration with the appropriate Government of Canada agencies and 
departments responsible for national security, border control and security, and law enforcement and immigration.  
 
The Lead Federal Department for the Study is Canada Border Services Agency (CBSA). Additional partners include 
the following: 
 
 Royal Canadian Mounted Police 
 Transport Canada  
 Defence Research and Development Canada (DRDC) – Toronto 
 Office of the Information and Privacy Commissioner of Ontario 
 University of Toronto 
 Indiana University-Purdue University Indianapolis (IUPUI) 
 IBG-Canada  
  
The rapid progress of biometrics technology in the last few years and the ease with which biometrics data can be 
acquired has resulted in the accumulation of large varying databases of biometrics information. This trend will 
continue in the future, with databases growing at an ever-increasing rate. The purpose of the Study is to examine 
some of the issues surrounding the sharing and safeguarding of biometric data in the Canadian Public Security 
context writ large. Throughout the study, the modality focus will be on iris biometrics (prime focus) and fingerprints 
(secondary).  
 
Biometric privacy enhancing technologies (PETs) are among the most promising technologies for data safeguarding. 
These technologies leverage biometric information to improve and ensure personal privacy while protecting 
sensitive information and assets. PETs can be categorized as follows:  

 
 Untraceable Biometrics – defined by Dr. Ann Cavoukian, Ontario Privacy Commissioner, as a new class of 

emerging privacy enhancing technologies such as biometric encryption 
 Anonymous Biometrics – a system where biometric data are not connected to any personal data; biometric data 

can be taken to another system to connect with personal information 
 Revocable (“Private”) Biometrics – allow people to have multiple biometric identities using the same 

biometric information; identities can be used independently or anonymously 
 
This document presents methodologies and results from scientific studies that identify and evaluate biometric 
technologies with respect to their ability to be used securely (in terms of safeguarding biometric databases). These 
new biometric technologies and associated data safeguarding capabilities must be consistent with the Government of 
Canada’s dual prosperity and security mandates, and must consider legal, ethical, cultural, and privacy issues. 
 
 
 
Biometric Data Sharing and Safeguarding Considerations  
 
The scale and complexity of biometric samples gathered by national and international systems are increasing and 
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becoming widespread. The current maturity level of biometrics has facilitated the use of biometrics in a wide range 
of government applications, while much work remains in devising acceptable ways of controlling the use, storage, 
and exchange of biometric data and personal information.  
 
Privacy threats related to biometrics have been discussed extensively. Major privacy risk areas are described as 
followed:  
 
 The ability to cross match data subjects across different services or applications by comparing biometric 

templates.  
 The possibility to extract sensitive information from the stored biometric data 
 The extension of application scope of biometric technology outside consent of the owner  
 
The various security threats associated with data sharing and safeguarding can be described by potential attacks on 
various components of a biometric systems, including during biometric data capture, storage, and transmission. Key 
security concepts related to data safeguarding include confidentiality, integrity, and revocability.   
 
Confidentiality ensures that information is not disclosed to unauthorized entities. In a biometric system, biometric 
data is stored and transmitted between various subsystems. Both storage and transmission of data should be 
protected against eavesdropping, unauthorized disclosure or modification of the data. This requires cryptographic 
techniques such as biometric encryption, or symmetric or asymmetric ciphers.  

 
Integrity is the property of safeguarding the accuracy and completeness of assets in a given dataset. If the integrity 
of a biometric reference or the result of the various processing algorithms and subsystems are untrustworthy, the 
verification outcome will also be untrustworthy. Cryptographic means to protect the integrity of the data, such as 
signatures or authenticated encryption and time stamping, are required.  
 
A strong security concern for biometric system relates to revocability and renewability of biometric templates. 
Individuals have a limited number of irises and fingers; identity theft renders corresponding biometric template as 
unusable for future use. Due to the persistence of biometric characteristics, a compromised biometric template is 
compromised forever. The risk of compromised templates can be mitigated for certain types of attacks by providing 
methods to allow renewable biometric templates.  
 
Modality-Specific Considerations 
 
Fingerprint, face recognition, and iris recognition are among the primary modalities considered for use in data 
safeguarding applications. 
 

Fingerprint: Strengths  Fingerprint: Weaknesses  

 Proven technology capable of high accuracy 
 Performance (accuracy, throughput) of leading 

technologies is well-documented and understood 
 Ability to enroll multiple fingers; exceptionally high 

accuracy for ten print collections  
 Ergonomic, easy-to-use devices 
 Fingerprint data is almost universally interoperable, 

facilitating searches against watchlists  

 Performance can deteriorate over time 
 Association with forensic applications 
 Users can intentionally damage fingerprints, reducing 

performance  
 Implementation of large-scale systems requires highly 

specialized expertise for performance tuning and 
optimization 
 

 
Face Recognition: Strengths  Face Recognition: Weaknesses  

 Does not require user training or effort  
 Can often leverage existing image datasets and existing 

photograph processes 
 Capable of identification at a distance 
 Capable of rapid 1:N identification with relatively little 

 Susceptible to high false non-match rates in 1:1 and 1:N 
applications 

 Changes in acquisition environment reduce matching 
accuracy  

 Changes in physiological characteristics reduce matching 
accuracy 
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processing power 
 Performance improves hand-in-hand with camera quality 

and image resolution  

 Lighting, camera angle reduce matching accuracy  

 

Iris Recognition: Strengths  Iris Recognition: Weaknesses  

 Exceptionally resistant to false matching 
 Default operation is identification mode  
 High stability of characteristic over lifetime 
 Hands-free operation 
 Real-time searches against large datasets (e.g. 10m irises) 

are possible with modest CPU loads  

 Acquisition of iris image requires more training and 
attentiveness than most biometrics 

 User discomfort with eye-based technology 
 Glasses can impact performance 
 Propensity for false non-matching or failure to capture  

 
Select Biometric Data Safeguarding Implementations  
 
The rapid advancement of biometric technology along with the ease with which biometrics data can be acquired has 
resulted in the accumulation of large datasets of biometrics information. However, reporting of best practices has 
been minimal in regards to data sharing and safeguarding. Critical areas assessed in this Study include system 
requirements, risk factors, strengths and weaknesses of the deployed data safeguarding technologies, privacy issues, 
and performance. The objective is to provide deployers and decisions-makers with the full range of information 
necessary to implement secure and interoperable solutions in defence and security applications. Implementations 
analyzed are an follows: 
 

Border / Traveler Systems Civil ID / Criminal ID Surveillance  

 U.S. Visitor and Immigration Status 
Indicatory Technology  

 EURODAC 
 Japan Biometrics Identification System   
 The Five Country Conference  Protocol  
 CANPASS 
 NEXUS 

 Gambia Biometric identification 
System  

 The Bangladesh Voter Registration 
Project  

 National ID Card (Thailand) 
 Multilingual Automated Registration 

System (United States) 

 New Delhi Railway Station 
Face Recognition 
Surveillance (India) 

 Community Protection Face 
Recognition System (United 
Arab Emirates) 

 
Biometric PET Approaches  
 
The study reviews the following biometric PET techniques.  
 
 Fuzzy Cryptosystems 
 Homomorphic Encryption 
 Local Aggregation 
 Multifactor Key Generation 
 Noninvertible Transforms 
 Parametric Key Generation 
 Random Projection   
 
Fuzzy Cryptosystems 
 
A “sketch” or “vault” is a secured template whose development can be traced to the “fuzzy vault” scheme proposed 
by Juels and Sudan. The scheme was designed to encrypt data such that it could be unlocked by similar but inexact 
matches. Variants of the fuzzy vault scheme are referred to more generally as fuzzy cryptosystems. The method lent 
itself well to the protection of biometric templates, where inputs are inconsistent due to lighting, rotation, etc. The 
mechanism for obfuscating data in fuzzy cryptosystems is to insert random noise that resembles genuine minutiae 
points or other features. In doing so an attacker cannot easily differentiate genuine features and false features. Most 
variations of this system follow key release protocols, though some generate keys from the biometric data. Fuzzy 
cryptosystems are perhaps the most practiced and debated template protection methods in academia. As a result 
there is a wealth of literature on the security vulnerabilities and countermeasures to mitigate these vulnerabilities, 
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making this method among the most mature of all template protection methods despite its many shortcomings. 
\Homomorphic Encryption 
 
An encryption method is homomorphic if the structure of the ciphertext is preserved in the encryption of the 
plaintext. Homomorphism has a “malleable” property, meaning that the ciphertext can be converted into another 
ciphertext that also reverts to the original plaintext. Homomorphic encryption can be used to calculate the similarity 
between an input templates and stored templates in the encrypted domain, preventing servers from extracting 
sensitive information from a query. Many of the proposed homomorphic encryption methods make use of existing 
cryptosystems proposed by Paillier, Goldwasser-Micali, and ElGamal, all of which are semantically secure 
protocols. Homomorphic encryption may be applied to one step in the template protection processes.  
 
Local Aggregation 
 
 Local aggregation is a means of extracting features from a biometric input by counting the number of features that 
appeared within the confines of many randomly generated regions superimposed the input. Each element in the set 
contains the number of features found in one of the randomly superimposed regions. Regions are generated 
according to a secret key that is unique to every user. This implies that each user has a unique but repeatable pattern 
of random regions. If someone were to present a stolen image without its corresponding key, features would be 
counted incorrectly and the imposter would be invalidated. Templates produced by this method can be cancelled by 
reenrolling the biometric with a different key, resulting in a new pattern of random regions. The method is 
considerably tolerant to intraclass variations because it checks only for the presence of features within wide regions. 
Intraclass variations due to minor rotation, translation, and warping are not likely to push the features outside the 
boundaries of the regions as long as the input is aligned. Cryptographic keys are computed from metrics like the 
number of minutiae points within each region, which are easier to reproduce in subsequent transactions than the 
exact coordinates and angles of the minutiae points. Overall this method possesses the advantage of computational 
simplicity. Furthermore, because this approach does not transform the biometric features, it avoids producing 
inadvertent errors due to arbitrarily or unreliably designed transform functions. 
 
Multifactor Key Generation 
 

Multifactor key generation combines a biometric with one or more other inputs, such as a password or token, to 
produce cryptographic keys. This approach is essentially a form of salting, whereby the user supplies secret 
auxiliary information that influences the transformation of the biometric image or template. Combining biometrics 
with other authentication factors has proven to be a reliable means of generating secure templates or cryptographic 
keys. From a security perspective, this method is advantageous because it combines something that the user ‘is’ with 
something that the user ‘has’ or ‘knows’. The principal tradeoff for security in multifactor key generation protocols 
is usability, not necessarily verification performance. Access control systems that use multifactor key generation 
could easily become a hassle to users who forgot their password or token. Furthermore, the need to present multiple 
inputs during authentication is impractical for applications like security checkpoints. 
 
Noninvertible Transforms 
 

Noninvertible transforms are a generic means of obfuscating biometric template data by way geometric 
transformation. Transforms are executed either at the single domain or the feature domain. The literature has favored 
feature domain transforms, which alter features such as the position of the minutiae coordinates. By contrast, single 
domain transforms alter the pixels of the raw image. Figure 23 illustrates the manner in which minutiae points are 
repositioned by a feature domain geometric transform. The dots indicate the position and angle of fingerprint 
minutiae. Observe how they are repositioned after a Gaussian transform. Any template protection method could 
employ a noninvertible transform as one of several means of obfuscating the template data. Typically the parameters 
which influence the transform are used as the cancelable property in a protected template. For additional security, 
these parameters can be derived from a user-supplied input such as a password or a private key.  
 
Parametric Key Generation 
 

Parametric key generation methods classify biometric features according to predefined parameters and generate a 
key derived from the parameter outputs rather than from the template itself. This approach mitigates the problem of 
intraclass variations because the shape and position of the features do not influence the construction of the encrypted 
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template. For example, rather than store the locations of minutiae points, a fingerprint is classified simply as having 
an arch, loop, or whorl. Many parameters must be defined to ensure uniqueness among templates. The performance 
of any parametric key generation algorithm depends on the reliability of its parameters. A parameter is considered to 
be reliable if it consistently returns the same value upon many presentations of the same biometric. Therefore the 
best performing algorithms are likely to contain many parameters with simple definitions, allowing for many 
possible combinations and accurately reproduced queries. 
 
Random Projection 
 
Random projection is a means of reducing the dimensionality of a set of points while nearly preserving the distances 
between the points. Some template protection methods use random projection as a means to randomly map minutiae 
coordinates while preserving semantic meaning in final set. 
 
Iris Recognition Assessments and Performance Evaluations  
 
Iris recognition technology is considered a candidate for use in biometric PETs due to the richness and stability of 
data in iris images. To gauge the suitability of this modality for use in PETs, Indiana University-Purdue University 
Indianapolis (IUPUI) analyzed previous studies of iris recognition performance and conducted a new study of iris 
recognition performance.  
 
Assessment of Iris Recognition through Variable-Quality Iris Datasets: Methodology  
 
IUPUI evaluated the ability of a commercial iris recognition algorithm to process 7 iris image datasets. Matching 
was performed on a 1:1 basis at the default 1:1 threshold.  
 

Dataset Name Image Format & Volume Quality / Capture Notes 

Iris Challenge Evaluation 
(ICE) 

640x480 , 2953 images Controlled environment, cooperative subjects, illuminated in 
the near infra-red (NIR) range 

Chinese Academy of 
Sciences (CASIA) 2.0 

640x480 , 2400 images NIR 

CASIA 3.0 Set 1 320x280 , 2639 images NIR; captured in two sessions, > one month interval 

CASIA 3.0 Set 2 640x480 , 16213 images NIR; captured in one session 

CASIA 3.0 Set 3 640x480 , 3183 images NIR; captured in one session 

West Virginia University 640x480 , 1852 images NIR; noisy, heterogeneous data, with obstructions, 
inconsistent illumination, out-of-focused, off-angle irises 

UBIRIS 800x600 , 1877 images Color images acquired in visible wavelengths; Two distinct 
sessions, images are predominately frontal gaze,  

Multimodal Biometric 
Grand Challenge (MBGC) 

2048x2048 , 148 videos, 1 
second duration 

NIR; focal length of IOM is 2~3 feet, images acquired while 
subjects walked toward the camera, primarily frontal view, 
subjects instructed to look at iris cameras 

IUPUI multi-wavelength 1280x1024 , 352 videos NIR; obtained from both eyes on two separate occasions, time 
period between each data acquisition is at least one week, only 
used green wavelength to test 

IUPUI Remote 1280x1024 , 731 videos, 30 
fps 

NIR; average iris radius was 95 pixels, data was acquired in 
two sessions, at least one week between sessions, 6 videos per 
iris, variety of positions and situations 
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Assessment of Iris Recognition through Variable-Quality Iris Datasets: Results and Analysis 
 
Metrics used to evaluate performance were quality, false rejection rate (FRR), false acceptance rate (FAR), and 
failure to process rate (FTPR). Results are shown in the charts below.  
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The following conclusions can be drawn from this multi-dataset evaluation: 
 
 Processing and matching are very fast. The system can perform iris recognition in 17.8ms (including 

segmentation, feature extraction and 1:1 matching).  
 It has very low FAR when using a decision threshold (Hamming Distance) of 0.33. The HD used for large-scale 

identification would have resulted in a 0.00% FAR and higher FRR for all datasets. 
 The system is capable of processing visible wavelength images, assuming that iris patterns are good enough for 

recognition.  
 The system can work reasonably well with regular pupil dilation.  
 
Areas for improvement include the following: 
 
 The system is unable to process non-cooperative, off-angle iris images.  
 Since the commercialized system is designed for images acquired from a specific, paired acquisition system, 

preferences in iris image resolution and illumination are present. Usually, the commercialized system can work 
best with iris images with resolution about 200 pixels across the iris. However, for lower resolution or higher 
resolution images, if resolution can be adjusted properly without deforming iris patterns, the system can also 
perform accurate iris recognition.  

 Recognition accuracy is affected dramatically by illumination condition, contrast, and motion blur.  
 The commercialized system would not work with dark color iris images in visible wavelength due to the lack of 

recognizable iris patterns.  
 Hamming Distances are not necessarily symmetric. When used for enrollment, lower-quality images resulted in 

higher (worse) HDs.  
 

Impact of Compression on Iris Recognition  
 
Data compression is beginning to play a part in the use of iris recognition systems. In the field applications using 
handheld iris recognition devices often use wireless communication to connect to the central server for identification 
and verification. While it will be ideal to have wide bandwidth for transmission in real-life applications, it often 
needs to transmit captured images or templates over a narrow-bandwidth communication channel. In this case, 
minimizing the amount of data to transmit (which is possible through compression) minimizes the time to transmit, 
and saves energy. The study analyzes previously-conducted evaluations on compression techniques including region 
on interest compression.  
 
Iris Recognition with Contact Lenses 
 
Contact lenses with iris patterns printed on them can cause errors in the iris recognition system. Experts have studied 
the effect of transparent contact lens on the recognition accuracy of several iris recognition systems. Their data was 
taken in the same studio with consistent ambient indoor lighting. They visually inspected all the images and reject 
any that were low quality. They then classified the contact-lens wearing subjects into five different categories based 
on a visible inspection they preformed manually.   
12,003 iris images from 87 contact-lens-wearing subjects and 9,697 non-contact-lens wearing subjects then 
processed through 3 matching algorithms. Contact-lens wearing were subjects grouped into five different categories 
based on a visible inspection they preformed manually. 
 

Category 0  No contact lens 

Category 1  Minimal or no change to the iris. At most these images contain a faint visible edge. 

Category 2  Images contain a definite circular boundary on the iris area.  

Category 3  Contains images which the lens has writing on the lens, the lens fits improperly causing it not to 
lay flat on iris, or the lens produces an artifact.  

Category 4  Contains the iris images where the subject is wearing hard contact lenses. Hard contacts produce 
a very noticeable ring and severely distort the area they cover. 
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Results below illustrate slight false reject rate (FRR) increases across categories 0-3 then substantial increases in 
FRR for category 4.  
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Video-based Non-cooperative Iris Recognition 
 
As iris recognition technologies continues to mature, it will gain the ability to acquire an image without the end user 
even knowing. This will make iris recognition a great way to verify people because it will cause no extra burden for 
the user. This technology also has great potential for finding people of interest, because a non-cooperative iris 
recognition system can identify people without the making the person aware they are being indentified. This 
application is particularly valuable for security at airport, borders or any other any public place.  
 
Multiple Wavelength Based Iris Recognition  
 
NIR images have been dominant in iris identification. One downside to NIR light is it requires active NIR 
illumination. Visible wavelength iris recognition could function using environmental illumination. In addition, 
visible wavelength recognition is important because it can be used with facial recognition for multimodal 
biometrics. In the future regular color surveillance camera may have the capability to perform iris recognition. 
Visible wavelength iris recognition has its own challenges, especially it is challenging for dark color eyes and 
remote iris recognition. In the future, multiple-wavelength iris recognition may attack more attention and can work 
with multiple-wavelength face recognition together for video surveillance.  
 
Multimodal Eye Recognition 
 
Since the iris patterns of dark color eyes could reveal rich and complex patterns only under NIR light, if the NIR iris 
image be obtained in long distance, the accuracy of iris recognition will drop dramatically. And if we acquire iris 
image in visible light, the iris patterns of dark color eyes will be hardly visible under visual light. The sclera, the 
white and opaque outer protective covering of the eye, can also be used in human identification. The sclera image 
segmentation process, it includes image down-sampling, conversion to the HSV color space, estimation of the sclera 
region, iris and eyelid detection, eyelid and iris boundary refinement, mask creation, and mask up-sampling. The 
sclera region is estimated using the best representation between two color-based techniques. 
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GenKey Fingerprint-Based PET Performance Evaluation  
 
GenKey Technology  
 
GenKey, a leading provider of biometric PET solution, has developed a biocryptic algorithm that bridges cryptology 
with biometrics. This patented algorithm converts a biometric image into Public Key Infrastructure (PKI)-
compatible crypto keys that are irreversible and share no mathematical relationship with the biometric sources they 
represent. Its solutions can be applied to a variety of contexts including education, licensing and healthcare. The 
GenKey algorithm provides a means to enroll and verify individuals based on biometric information, such as a 
fingerprint. The algorithm offers a number of options which provide tradeoffs between recognition speed, accuracy, 
and biometric privacy. 
 
GenKey Feature Template vs. ID Key Enrollments  
 
The GenKey algorithm can perform two types of enrollment. In feature template enrollment, discriminating features 
from fingerprint images are extracted and stored as the individual’s biometric template. The feature template is 
stored for later use and the biometric image may be discarded. ID Key enrollment also extracts discriminating 

features from fingerprint images, but 
converts features into a numerical value 
which represents the individual’s 
biometric. At the conclusion of an ID Key 

enrollment, the ID Key (numerical value) is stored and the biometric image and feature template may be discarded. 
This type of enrollment is focus of IBG’s performance evaluation. 
 
IBG tested two GenKey ID Key types: 
 
 Standard ID Keys offer performance near the performance of the feature template enrollments. 
 Flex ID Keys tradeoff key size and accuracy.  
 
IBG evaluated performance using the Standard ID Key as well as 12, 25, 56, and 107-byte Flex ID keys. 
 

 Feature Template (not a PET) Standard ID Key (PET) Flex ID Key (PET) 

Accuracy Feature enrollments provide the most 
robust performance. 

Standard ID Keys will 
perform at only slightly 
degraded error rates as 
compared to feature 
templates. 

Flex ID Keys provide a 
range of accuracy 
performance options. 
Larger Flex ID Keys 
provide accuracy similar 
to Standard ID Keys. 

Privacy Offers some privacy protection for the 
fingerprint; having access to a feature 
template does not provide a malicious 
user with capability to reconstruct the 
original fingerprint. With detailed 
knowledge of the GenKey feature 
template creation process, a malicious 
user could gain access to general 
information about the fingerprint 
structure. 

ID Keys offer a privacy advantage over feature template 
enrollment. A malicious user with access to the ID Key 
cannot practically regenerate the fingerprint features or 
extract any detailed information about the fingerprint 
structure. The technique used to convert the feature 
template to a key is analogous to a cryptographic one-
way function. It is easy to compute an ID Key from a 
feature template; however, reversing this process is 
computationally infeasible. 

Throughput Feature enrollments offer the fastest 
search speeds. The GenKey algorithm is 
capable of performing millions of feature 
template matches per second using 
ordinary computer hardware. 

While not as fast as feature template matching, ID Key 
verifications can also be performed at relatively high 
speeds using ordinary computer hardware; GenKey 
estimates rates of hundreds of thousands of verifications 
per second. Match speed increases (i.e. becomes slower) 
as stricter match thresholds are applied.  

Typical Key Size 128-256 bytes 64-128 bytes 12-107 bytes 
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GenKey Test Data  
 
IBG used a collection of approximately 6000 flat fingerprint images (left and right index) from 1200 subjects 

collected under indoor office 
conditions. Fingerprint 
images were collected 
through a 500dpi Cross 
Match Verifier. Each subject 
provided two samples per 
position during a first visit. 
Additionally, approximately 

650 of the 1,200 subjects provided two samples per position during a second visit which occurred roughly one 
month after the first.  
 
GenKey Enrollment and Recognition Processes  
 
Using a Software Development Kit (SDK) provided by GenKey, IBG developed a custom application that 
performed feature extraction, template creation, and ID Key creation. Both index fingerprints had to enroll in order 
for an enrollment to be successful. IBG also developed a custom application that performed bulk matching. Second-
visit fingerprint images were used for recognition (i.e. as probe images) are compared against first-visit fingerprint 
data.  
 

 
 
In addition to processing through the GenKey algorithm, IBG processed the same fingerprint dataset through a 
widely-adopted, minutiae-based fingerprint algorithm –Neurotechnology VeriFinger version 6.3. The VeriFinger 
processing approach was equivalent to the GenKey approach described below. Comparing and contrasting GenKey 
results with VeriFinger results will provide a general frame of reference for validating the commercial viability of 
GenKey’s ID Key technology. 

  

Enrollment Process 
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Processing volumes are shown below.  
 

 GenKey  VeriFinger 6.N 

Subjects 650 650 

Genuine comparisons 456 459 

Impostor Comparisons 550976 560741 

 
GenKey Test Results 
 
Based on collection and comparison processes described above, the following metrics were generated.  
 

Usability Metrics Accuracy Metrics 

 Failure to Encode Rate (FTE) 
 Failure to Acquire Rate (FTA) 
 Processing Time 

 False Match Rate (FMR) 
 False Non-Match Rate (FNMR) 
 Distribution of Errors by Subject 

 
Failure to Enroll  Enrollment Attempts FTE Count FTE Rate 

VeriFinger 6.3 2448 42 1.72% 

GenKey ID Key 2448 45 1.84% 

 
Failure to Acquire   Recognition Encoding Attempts FTA Count FTA Rate 

VeriFinger 6.3 1841 1 0.05% 

GenKey ID Key 1841 66 3.59% 

Results show that GenKey and Verifinger FTE are roughly equivalent, while GenKey FTA is substantially higher 

Recognition Process 
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than VeriFinger FTA. This underscores the concept that GenKey is predicated on the use of high-quality images 
whose quality is validated  in real time at the point of capture.  
 

 
 
Comparative performance assessment with a challenging dataset demonstrates the viability of commercial, 
fingerprint-based DETs. Biometric PET performance is relatively close to that of a widely-deployed, NIST-tested 
minutiae-based matcher 
 
For many biometric systems, certain subjects encounter higher false match rates than others. IBG analyzed the 
distribution of false matches across subjects. Subject-specific false match rates (aggregated across all evaluated ID 
Key types and sizes, and measured at a typical threshold of 0.45) ranged from as high as 4.04% and as low as 
0.00%. While false match rates generally decline as key sizes increase, in some cases subjects encountered higher 
false match rates at larger key sizes. For example, 251 of 457 subjects encountered higher false match rates at an ID 
Key size of 56 bytes than at 25 bytes.  
 
Conclusions  
 
The following high-level conclusions can be drawn from this study.  
 
 Aspects of non-cooperative iris recognition performance, including high failure to enroll and false non-match 

rates, complicate its use as a PET 
 Controlled iris recognition capture, and/or high-quality iris images, will increase the likelihood of iris usage as a 

PET 
 Comparative performance assessment with a challenging dataset demonstrates the viability of commercial, 

fingerprint-based DETs 
 GenKey performance is close to that of a widely-deployed, NIST-tested minutiae-based matcher 
 Deployers should study how to incorporate key-based approaches into their application architectures  
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Contexte 
 
Le présent document constitue le Rapport d’étude PSTP09-0351BIO, Analyse et meilleures pratiques 
relatives aux technologies de protection des données biométriques. L’un des principaux objectifs du 
Programme technique de sécurité publique (PTSP) de la Communauté de praticiens en biométrie est 
d’évaluer, d’analyser et de mettre en application des technologies biométriques qui améliorent les 
capacités du pays en matière de contrôle de l’accès, de la vérification de l’identité et de la sécurité de 
commerce électronique tout en respectant les lois et les actes canadiens. Ces mesures sont prises en 
collaboration avec les agences et ministères du gouvernement canadien responsables de la sécurité 
nationale, du contrôle frontalier et de sécurité à la frontière, avec la police et les services d’immigration.  
 
Le ministère fédéral en chef pour la présente étude est l’Agence des services frontaliers du Canada 
(ASFC). D’autres partenaires comprennent : 
 
 Gendarmerie royale du Canada 
 Transports Canada  
 Recherche et développement pour la Défense Canada (RDDC) – Toronto 
 Commissariat à l’information et à la protection de la vie privée de l’Ontario 
 Université de Toronto 
 Indiana University-Purdue University Indianapolis (IUPUI) 
 IBG-Canada  
  
L’évolution rapide des technologies biométriques des dernières années et la facilité avec laquelle les 
données biométriques peuvent être acquises ont mené à une accumulation de vastes bases de 
renseignements biométriques divers. Cette tendance se maintiendra étant donné le rythme constant avec 
lequel les bases de données sont alimentées. L’objectif de la présente étude est d’examiner certaines 
questions relatives au partage et à la protection des données biométriques dans le contexte de la 
sécurité publique au Canada. Au cours de l’étude, l’accent sera placé sur les données biométriques de 
l’iris (point principal) et les empreintes digitales (point secondaire).  
 
Les technologies d’amélioration de la confidentialité des données biométriques (ACDB) sont parmi les 
technologies les plus prometteuses en matière de protection des données. Ces technologies misent sur 
les renseignements biométriques pour améliorer et assurer la protection des renseignements personnels 
tout en protégeant des renseignements et des biens sensibles. Ces technologies peuvent être classées 
comme suit :  

 
 Données biométriques non retraçables – définies par Madame Ann Cavoukian, commissaire à la 

protection de la vie privée de l’Ontario, comme une nouvelle catégorie de technologies d’amélioration 
de la vie privée émergentes comme le cryptage des données biométriques 

 Données biométriques anonymes – système où les données biométriques ne sont pas reliées à 
des données personnelles; les données biométriques peuvent être placées dans un autre système 
afin de les relier à des renseignements personnels 

 Données biométriques révocables (privées) – permet à certaines personnes d’obtenir de multiples 
identificateurs biométriques en utilisant les mêmes renseignements biométriques; les identificateurs 
peuvent être utilisés indépendamment ou de manière anonyme 

 
Le présent document introduit des méthodologies et les résultats d’études scientifiques qui identifient et 
évaluent les technologies biométriques sur leur capacité à être utilisées de manière sécurisée (en terme 
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de protection des bases de données biométriques). Ces nouvelles technologies biométriques et les 
capacités de protection de données connexes doivent être conformes aux mandats de prospérité et de 
sécurité du gouvernement canadien et doivent prendre en considération les questions relatives au droit, à 
l’éthique, à la culture et à la protection des renseignements personnels.  
Points à considérer en matière de partage et de protection des données biométriques  
 
La quantité et la complexité des échantillons de données biométriques recueillis par les systèmes 
nationaux et internationaux s’accroissent et se propagent. Le niveau de maturité actuel des données 
biométriques a facilité l’utilisation de celles-ci dans un vaste éventail d’applications gouvernementales, 
bien qu’il reste beaucoup de travail à faire dans la mise au point de moyens acceptables pour contrôler 
l’utilisation, le stockage et l’échange de données biométriques et de renseignements personnels.   
 
Les menaces relatives à la protection des données biométriques ont été examinées de manière 
approfondie. Les principaux secteurs de risque pour la protection de la vie privée sont décrits ainsi :  
 
 La capacité de trouver la compatibilité croisée de personnes visées pour divers services ou diverses 

applications en comparant les matrices de données biométriques.  
 La possibilité d’extraire des renseignements sensibles des données biométriques stockées. 
 L’extension de l’étendue d’une technologie biométrique à l’extérieur du cadre de consentement du 

propriétaire  
 
Les diverses menaces de sécurité associées au partage et à la protection des données peuvent être 
décrites par des attaques potentielles sur divers éléments des systèmes biométriques, y compris la 
saisie, le stockage et la transmission des données biométriques. Les concepts de sécurité clés relatifs à 
la protection des données comprennent la confidentialité, l’intégrité et la révocabilité.   
 
La confidentialité permet d’assurer que les renseignements ne sont pas dévoilés à des personnes non 
autorisées. Dans un système biométrique, les données sont stockées dans divers sous-systèmes et 
transmises entre ceux-ci. Le stockage et la transmission des données devraient être protégés contre 
l’interception clandestine, la divulgation non autorisée ou la modification de données. Cela nécessite des 
techniques cryptographiques comme le cryptage biométrique ou symétrique ou les cryptages 
asymétriques.   

 
L’intégrité constitue la protection de la précision et de l’intégralité des biens dans un ensemble de 
données. Si l’intégrité d’une référence biométrique ou le résultat des divers traitements d’algorithme et 
sous-systèmes ne sont pas dignes de foi, le résultat de la vérification ne sera pas de digne de foi 
également. La cryptographie signifie protéger l’intégrité des données comme les signatures, le cryptage 
authentifié et l’horodatage.   
 
Une des questions importantes en matière de protection des systèmes biométriques touche la 
révocabilité et la renouvelabilité des gabarits de données biométriques. Chaque individu possède un 
nombre limité d’iris et de doigts et donc, le vol d’identité rend le gabarit biométrique correspondant 
inutilisable. En raison de la longévité des caractéristiques biométriques, un gabarit biométrique 
compromis le sera pour toujours. Il est possible d’empêcher certains types d’attaques de compromettre 
les gabarits grâce à des méthodes de création de gabarits de données biométriques renouvelables.   
 
Modalités spécifiques à prendre en considération 
 
Les empreintes digitales, la reconnaissance du visage et la reconnaissance de l’iris sont parmi les 
modalités primaires prises en considération pour les applications de protection des données.  
 

Empreintes digitales : forces  Empreintes digitales : faiblesses   

 Technologie éprouvée et d’une grande précision 
 Le rendement (précision, débit) des technologies de  

 Le rendement peut diminuer avec le temps 
 Association avec des applications judiciaires 
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pointe est bien documenté et compris 
 Capable de traiter plusieurs doigts à la fois; 

précision exceptionnellement grande pour la collecte 
de 10 empreintes  

 Dispositifs ergonomiques et faciles à utiliser 
 Les données sur les empreintes sont presque toutes 

interexploitables, ce qui facilite les recherches dans 
des listes de surveillance  

 Les utilisateurs peuvent endommager 
intentionnellement les empreintes, ce qui réduit le 
rendement  

 La mise en application de systèmes à grande 
échelle nécessite une expertise hautement 
spécialisée pour régler et optimiser le rendement 
 

 
Reconnaissance de visage : forces Reconnaissance de visage : faiblesses  

 Ne nécessite pas de formation et ne requiert pas 
d’effort pour l’utilisateur  

 Peut souvent avoir une incidence sur les ensembles 
de données d’images existants et les processus de 
photographie existants 

 Capable d’une identification à distance 
 Capable d’une identification 1:N rapide qui ne 

nécessite qu’une faible capacité de traitement  
 Le rendement s’améliore grâce à la qualité de la 

caméra et à la résolution d’image  

 Susceptible à des taux élevés de fausse non-
correspondance dans les applications 1:1 et 1:N 

 Des changements dans l’environnement 
d’acquisition diminuent la précision des 
correspondances  

 Des changements dans les caractéristiques 
physiologiques réduisent la précision des 
correspondances 

 L’éclairage et l’angle de la camera réduisent la 
précision des correspondances 

 

Reconnaissance de l’iris : forces  Reconnaissance de l’iris : faiblesses  

 Extrêmement résistante aux fausses 
correspondances 

 Fonctionne par défaut en mode d’identification  
 Grande stabilité des caractéristiques pour la durée 

de vie 
 Fonctionnement mains libres 
 Des recherches en temps réel dans de vastes 

ensembles de données (p. ex. : 10 millions d’iris) 
sont possibles avec des charges CPU légères 

 L’acquisition d’une image de l’iris nécessite plus de 
formation et d’attention que la plupart des autres 
données biométriques. 

 Malaise de l’utilisateur pour les technologies qui font 
appel aux yeux 

 Le port de lunettes peut avoir une incidence sur le 
rendement. 

 Propension pour de fausses non-correspondances 
ou incapacité de saisir les données  

 
Mises en application de systèmes de protection des données biométriques  
 
Les avancées rapides des technologies biométriques de même que la facilité avec laquelle les données 
biométriques peuvent être acquises ont mené à une accumulation de vastes ensembles de données 
biométriques. Cependant, les rapports portant sur les meilleures pratiques relatives au partage et à la 
protection des données sont peu nombreux. Les secteurs critiques évalués dans la présente étude 
comprennent les exigences du système, les facteurs de risques, les forces et les faiblesses des 
technologies de protection des données déployés, les questions relatives à la protection de la vie privée 
et le rendement. L’objectif est de fournir aux personnes chargées du déploiement et des décisions une 
panoplie de renseignements nécessaires pour mettre en place des solutions sécurisées et 
interexploitables pour les applications de défense et de sécurité. Les mises en application analysées 
sont : 
 

Systèmes frontière / voyageur Identification civil / indentification 
criminel 

Surveillance  

 U.S. Visitor and Immigration Status 
Indicatory Technology  

 EURODAC 
 Japan Biometrics Identification System   
 The Five Country Conference  Protocol  
 CANPASS 
 NEXUS 

 Gambia Biometric identification 
System  

 The Bangladesh Voter 
Registration Project  

 National ID Card (Thaïlande) 
 Multilingual Automated 

Registration System (États-Unis) 

 New Delhi Railway Station 
Face Recognition 
Surveillance (Inde) 

 Community Protection 
Face Recognition System 
(Émirats arabes unis) 
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Approches des techniques ACDB  
 
L’étude examine les techniques ACDB suivantes :  
 
 Systèmes cryptographiques flous 
 Chiffrement homomorphique 
 Rassemblement local 
 Génération de clé multifactorielle 
 Transformations sans inversion 
 Génération de clé paramétrique 
 Projection aléatoire 
 
Systèmes cryptographiques flous 
 
Une « esquisse » ou « enceinte » est un gabarit sécurisé dont l’élaboration peut être reliée au projet 
« enceinte floue » proposé par Juels et Sudan. Ce projet a été conçu pour chiffrer des données de telle 
manière qu’elles pourraient être déverrouillées par des correspondances semblables, mais inexactes. 
Généralement, on appelle « systèmes cryptographiques flous » les diverses versions du projet enceinte 
floue. La méthode se prête bien à la protection de gabarits biométriques dans lesquels les entrées sont 
irrégulières en raison de l’éclairage, de la rotation, etc. Le mécanisme de masquage des données dans 
les systèmes cryptographiques flous consiste à insérer un bruit aléatoire qui ressemble à des points 
caractéristiques ou autres caractéristiques authentiques. De cette manière, l’attaquant ne peut facilement 
différencier les caractéristiques authentiques des fausses caractéristiques. La plupart des versions de ce 
système respectent les protocoles clés de libération, bien que certaines génèrent des clés à partir des 
données biométriques. Les systèmes cryptographiques flous sont peut-être les méthodes de protection 
de gabarit les plus utilisées et les plus controversées dans le milieu universitaire. Par conséquent, il 
existe une panoplie de documents écrits sur la vulnérabilité relative à la sécurité et aux contre-mesures 
pour atténuer celles-ci, faisant de cette méthode, malgré ses nombreuses faiblesses, l’une des plus 
raisonnées de toutes les méthodes de protection de gabarit. 
 
Chiffrement homomorphique 
 
Une méthode de chiffrement est homomorphique si la structure du cryptogramme est conservée dans le 
chiffrement du texte en clair. L’homomorphisme possède une caractéristique « malléable », c’est-à-dire 
que le cryptogramme peut être convertit en un autre cryptogramme, lequel renvoie au texte en clair 
original. Le chiffrement homomorphique peut être utilisé pour calculer la ressemblance entre des gabarits 
de données d’entrée et des gabarits stockés dans le domaine du chiffrement, ce qui empêche les 
serveurs d’extraire des renseignements sensibles lors d’une interrogation. Plusieurs des méthodes de 
chiffrement homomorphiques proposées utilisent des systèmes de chiffrements existants proposés par 
Paillier, Goldwasser-Micali et ElGamal et elles constituent toutes des protocoles sémantiquement 
sécurisés. Le chiffrement homomorphique peut être utilisé pour une étape des processus de protection 
des gabarits.   
 
Rassemblement local 
 
Le rassemblement local sert à extraire des caractéristiques d’une donnée biométrique en comptant le 
nombre de caractéristiques qui apparaissent à l’intérieur de plusieurs régions générées aléatoirement et 
superposées à la donnée. Chaque élément de cet ensemble comprend le nombre de caractéristiques 
retrouvées dans une des régions superposées aléatoirement. Les régions sont générées selon une clé 
secrète unique à chaque utilisateur. Cela signifie que chaque utilisateur possède un regroupement 
reproductible de régions aléatoires. Si quelqu’un présentait une image volée sans posséder la clé 
correspondante, les caractéristiques seraient comptées incorrectement et l’imposteur serait invalidé. Les 
gabarits générés par cette méthode peuvent être annulés en réinscrivant la donnée biométrique à l’aide 
d’une autre clé, ce qui permet de former un nouveau regroupement de régions aléatoires. Cette méthode 
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tolère très bien les variances intraclasses, car elle vérifie uniquement la présence de caractéristiques au 
sein de larges régions. Les variances intraclasses engendrées par une faible rotation, un petit 
déplacement et une petite déformation ne devraient pas faire sortir les caractéristiques des limites des 
régions tant et aussi longtemps que la donnée est alignée. Les clés cryptographiques sont calculées avec 
le système métrique comme le nombre de points caractéristiques de chaque région. En effet, les 
caractéristiques sont plus faciles à reproduire dans les transactions subséquentes que les coordonnées 
et les angles exacts des points caractéristiques. Sur l’ensemble, cette méthode possède l’avantage de la 
simplicité computationnelle. De plus, étant donné que cette approche ne transforme pas les 
caractéristiques des données biométriques, elle ne produit pas d’erreurs involontaires causées par des 
fonctions de transformations conçues arbitrairement ou de manière peu fiable.  
 
Génération de clé multifactorielle 
 
La génération de clé multifactorielle combine une donnée biométrique et une autre ou d’autres données 
d’entrée comme un mot de passe ou un jeton d’authentification, pour produire des clés cryptographiques. 
Cette approche est, essentiellement, une forme de « salage » dans lequel l’utilisateur fournit un 
renseignement auxiliaire secret qui a une incidence sur la transformation de l’image biométrique ou du 
gabarit. La combinaison de données biométriques et d’autres facteurs d’authentification s’est prouvée un 
moyen fiable de générer des gabarits ou des clés cryptographiques sécurisés. D’une perspective de 
sécurité, cette méthode est avantageuse, car elle combine quelque chose que l’utilisateur « est » à 
quelque chose que l’utilisateur « possède » ou « connaît ». Le principal compromis en matière de 
sécurité avec les protocoles de génération de clé multifactorielle est la convivialité, pas nécessairement le 
rendement de vérification. Les systèmes de contrôle de l’accès qui utilisent la génération de clé 
multifactorielle pourraient facilement devenir contrariants pour les utilisateurs qui oublient leur mot de 
passe ou leur jeton d’authentification. De plus, le besoin d’entrer de multiples données pendant 
l’authentification est impraticable pour les applications comme les points de contrôle de sûreté. 
 
Transformations sans inversion 
 
Les transformations sans inversion sont un moyen générique de masquer les données du gabarit 
biométrique grâce à la transformation géométrique. Les transformations sont effectuées soit dans le 
domaine unique ou l’espace des attributs. La documentation favorise les transformations de l’espace des 
attributs, lesquelles modifient les caractéristiques comme la position des coordonnées caractéristiques. 
Par contre, les transformations du domaine unique modifient les pixels de l’image brute. La Figure 23 
illustre la manière avec laquelle les points caractéristiques sont repositionnés grâce à une transformation 
géométrique de l’espace des attributs. Les points indiquent la position et l’angle des caractéristiques 
d’une empreinte digitale. On peut remarquer comment ils sont repositionnés après une transformation 
Gaussian. Toute méthode de protection de gabarit pourrait utiliser une transformation sans inversion 
comme moyen de masquer les données du gabarit. Typiquement, les paramètres qui ont une incidence 
sur la transformation sont utilisés comme  propriété révocable dans un gabarit protégé. Pour une sécurité 
accrue, ces paramètres peuvent être empruntés à une donnée fournie par l’utilisateur comme un mot de 
passe ou une clé privée.  
 
Génération de clé paramétrique 
 
Les méthodes de génération de clé paramétrique classent les caractéristiques biométriques 
conformément aux paramètres prédéfinis et génèrent une clé issue des données de sortie du paramètre 
plutôt que du gabarit. Cette approche atténue le problème des variances intraclasses puisque la forme et 
la position des caractéristiques n’ont pas d’incidence sur la construction du gabarit chiffré. Par exemple, 
plutôt que de stocker les emplacements des points caractéristiques, une empreinte digitale est classée 
selon son arche, sa boucle ou son tourbillon. De nombreux paramètres doivent être définis pour assurer 
son unicité parmi les gabarits. Le rendement de tout algorithme de génération de clé paramétrique 
dépend de la fiabilité de ses paramètres. Un paramètre est considéré fiable s’il obtient toujours la même 
valeur lorsqu’on lui présente la même donnée biométrique. Les algorithmes les plus efficaces 
comprennent fort probablement de nombreux paramètres et des définitions simples, permettant de 
nombreuses combinaisons et des interrogations reproduites avec précision.  
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Projection aléatoire 
 
La projection aléatoire est un moyen de réduire la dimensionnalité d’un ensemble de points tout en 
préservant les distances entre ces points. Certaines méthodes de protection des gabarits utilisent la 
projection aléatoire comme moyen pour tracer aléatoirement les coordonnées caractéristiques tout en 
préservant la signification sémantique dans l’ensemble final.  
 
Évaluation de la reconnaissance de l’iris et évaluation du rendement  
 
La technologie de reconnaissance de l’iris est considérée une technologie candidate pour les 
technologies ACDB en raison de la richesse et de la stabilité des données relatives aux images de l’iris. 
Pour jauger la pertinence de cette modalité dans les technologies ACDB, l’Indiana University-Purdue 
University Indianapolis (IUPUI) a analysé des études antérieures relatives au rendement de la 
reconnaissance de l’iris et a mené une nouvelle étude sur ce rendement.   
 
Évaluation de la reconnaissance de l’iris par le biais des ensembles de données sur des iris variable-
qualité : méthodologie  
 
L’IUPUI a évalué la capacité d’un algorithme de reconnaissance de l’iris commercial de traiter sept (7) 
ensembles de données d’images d’iris. La correspondance a été effectuée sur une base 1:1 à un seuil de 
défaillance de 1:1.  
 

Nom de l’ensemble de 
données  

Format et volume de 
l’image  

Notes qualité/saisie 

Iris Challenge Evaluation 
(ICE) 

640 x 480, 2 953 images Environnement contrôlé, sujets coopératifs, éclairé dans 
le proche infrarouge (NIR)  

Chinese Academy of 
Sciences (CASIA) 2.0 

640 x 480, 2 400 images NIR 

CASIA 3.0 Set 1 320 x 280, 2 639 images NIR; saisie en deux sessions, > d’un mois d’intervalle 

CASIA 3.0 Set 2 640 x 480, 16 213 images NIR; saisie en une session 

CASIA 3.0 Set 3 640 x 480, 3 183 images NIR; saisie en une session 

West Virginia University 640 x 480, 1 852 images NIR; bruyante, données hétérogènes, avec masquages, 
éclairage inconsistant, flous, iris décalés 

UBIRIS 800 x 600, 1 877 images Images couleur acquises dans les longueurs d’ondes 
visibles; deux sessions distinctes, les images sont 
majoritairement de face 

Multimodal Biometric 
Grand Challenge 
(MBGC) 

2 048 x 2 048, 148 vidéos, 
durées de 1 seconde 

NIR; distance focale du IOM est de 2 à 3 pieds, les 
images acquises lorsque les sujets marchent en 
direction de la camera, majoritairement des prises de 
face, les sujets reçoivent la consigne de regarder la 
caméra de balayage des iris 

IUPUI multi-wavelength 1 280 x 1 024, 352 vidéos NIR; image des 2 yeux prise à 2 moments distincts, la 
durée entre chaque acquisition de données est d’au 
moins une semaine; utilise uniquement les ondes vertes 
pour les essais 

IUPUI Remote 1 280 x 1 024, 731 vidéos, 
30 fps 

NIR; le rayon d’iris moyen était de 95 pixels, les données 
ont été acquises en deux sessions, au moins une 
semaine entre chaque session, six (6) vidéos par iris, 
variété de position et de situations 
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Évaluation de la reconnaissance de l’iris par le biais d’ensembles de données sur les iris variable-qualité : 
résultats et analyse 
 
Les facteurs utilisés pour l’évaluation du rendement étaient la qualité, le taux de faux rejets (TFR), le taux 
d’acceptation erronée (TAE) et le taux d’échec de traitement (FTPR). Les résultats sont illustrés dans les 
tableaux ci-dessous :  
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Les conclusions suivantes peuvent être tirées de cette évaluation d’ensembles de données multiples : 
 
 Le traitement et la correspondance sont très rapides. Le système peut effectuer une reconnaissance 

de l’iris en 17,8 ms (y compris la segmentation, l’extraction de caractéristiques et la correspondance 
1:1).  

 Il possède un faible taux d’échec d’acquisition (FAR) lorsqu’on utilise un seuil de décision (distance 
de Hamming) de 0,33. La distance de Hamming utilisée pour l’identification à grande échelle aurait 
eu comme résultat un taux d’échec d’acquisition (FAR) de 0,00 % et un taux de faux rejets (TFR) plus 
élevés pour tous les ensembles de données.  

 Le système est en mesure de traiter des images dans les longueurs d’ondes visibles, à condition que 
les formes d’iris soient bonnes pour la reconnaissance.   

 Le système fonctionne raisonnablement bien lorsque les pupilles sont normalement dilatées.   
 
Les points à améliorer sont les suivants : 
 
 Le système est incapable de traiter des images non coopératives et décalées.  
 Puisque le système commercialisé est conçu pour des images recueillies à l’aide d’un système 

d’acquisition précis et jumelé, il existe des préférences en matière de résolution de l’image et 
d’éclairage. En général, le système commercialisé fonctionne mieux avec des images d’iris d’une 
résolution d’environ 200 pixels sur tout l’iris. Cependant, le système sera en mesure d’effectuer une 
reconnaissance de l’iris précise si la résolution de l’image peut être adaptée adéquatement sans 
déformer l’iris.   

 L’éclairage, le contraste et le fou animé ont une grande incidence sur la précision de la 
reconnaissance.  

 Le système commercialisé ne peut pas fonctionner avec des images d’iris foncés dans les longueurs 
d’ondes visibles en raison du manque d’iris reconnaissables.  

 Les distances de Hamming ne sont pas nécessairement symétriques. Lorsqu’elles sont utilisées pour 
l’enregistrement, les images de faible qualité ont obtenu de plus grandes distances de Hamming 
(moins bonnes).  
 

Incidence de la compression sur la reconnaissance de l’iris  
 
La compression des données commence à jouer un rôle dans l’utilisation des systèmes de 
reconnaissance de l’iris. Sur le terrain, les applications qui utilisent des dispositifs de reconnaissance de 
l’iris portatifs utilisent souvent des communications sans fil pour se brancher au serveur central lors de 
l’identification et de la vérification. Bien qu’il soit idéal d’avoir une bande passante large pour la 
transmission des applications en temps réel, il faut souvent transmettre des images saisies ou des 
gabarits sur un canal de communication à bande passante étroite. Dans ce cas, il faut minimiser la 
quantité de données à transmettre (ce qui est possible grâce à la compression) afin de diminuer le temps 
nécessaire pour les transmissions et d’économiser de l’énergie. L’étude a analysé des évaluations 
menées antérieurement sur les techniques de compression, y compris la compression des régions 
d’intérêt.  
 
Reconnaissance de l’iris avec des verres de contact 
 
Les verres de contact imprimés peuvent causer des erreurs dans le système de reconnaissance de l’iris. 
Les experts ont étudié l’effet des verres de contact transparents sur la précision de la reconnaissance de 
plusieurs systèmes. Leurs données ont été prises dans le même studio avec un éclairage ambiant 
intérieur constant. Les experts ont inspecté visuellement toutes les images et rejeté toutes celles de faible 
qualité. Ils ont ensuite classé les sujets portant des verres de contact en cinq (5) catégories distinctes.    
Douze mille trois (12 003) images d’iris provenant de 87 sujets portant des verres de contact et 
9 697 images de sujets ne portant pas de verres de contact ont été traitées par trois (3) algorithmes de 
correspondance. Les sujets portant des verres de contact ont été regroupés en cinq (5) catégories 
différentes selon une inspection visuelle.  
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Catégorie 0  Aucun verre de contact 

Catégorie 1  Aucune modification ou modification minime de l’iris. Tout au plus, ces images 
présentent un bord à peine visible.  

Catégorie 2  Les images présentent une limite circulaire définie sur la zone de l’iris.  

Catégorie 3  Les images présentent des verres munis d’inscriptions, des verres qui s’ajustent mal et 
ne sont pas à plat sur l’iris ou des verres qui produisent un artéfact.  

Catégorie 4  Les images d’iris où les sujets portent des verres de contact durs. Les verres de contact 
durs produisent un cercle très distinct et déforment la zone qu’ils recouvrent.  

 
Les résultats ci-dessous illustrent de légères augmentations du taux de faux rejets (TFR) dans les 
catégories 0 à 3, et des augmentations importantes du TFR dans la catégorie 4.   
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Reconnaissance de l’iris non-coopérative basée sur une vidéo 
 
Au fur et à mesure que les technologies de reconnaissance de l’iris évoluent, elles seront en mesure 
d’acquérir une image sans que l’utilisateur final ne s’en rende compte. Cela fera de la reconnaissance de 
l’iris une excellente technique de vérification puisqu’il n’y aura pas de demande d’effort supplémentaire 
pour l’utilisateur. Cette technologie constitue également un bon outil potentiel pour la recherche de 
personnes d’intérêt puisqu’un système de reconnaissance de l’iris non-coopératif permet d’identifier des 
personnes sans que celles-ci ne soient mises au courant. Cette application est tout particulièrement 
intéressante pour la sécurité dans les aéroports, aux frontières et dans tout autre place publique.   
 
Reconnaissance de l’iris basée sur les longueurs d’ondes multiples  
 
Les images NIR jouent depuis longtemps un rôle prédominant dans l’identification de l’iris. L’un des 
désavantages de la lumière NIR est qu’elle nécessite un éclairage NIR actif. La reconnaissance de l’iris 
basée sur les longueurs d’ondes visibles pourrait fonctionner à l’aide d’un éclairage environnemental. De 
plus, la reconnaissance basée sur les longueurs d’ondes visibles est importante, car elle peut être utilisée 
de concert avec la reconnaissance faciale pour les données biométriques multimodales. Dans quelques 
années, les caméras de surveillance en couleur normales pourraient être en mesure d’effectuer la 
reconnaissance de l’iris. La reconnaissance de l’iris basée sur les longueurs d’ondes visibles présente 
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ses défis, notamment pour les yeux de couleur foncée et pour la reconnaissance à distance. On pourrait 
voir apparaître dans l’avenir un système de reconnaissance de l’iris à longueurs d’ondes multiples, lequel 
pourrait être utilisé de concert avec un système de reconnaissance faciale à longueurs d’ondes multiples 
pour la surveillance vidéo.   
 
Reconnaissance multimodale des yeux  
 
Les motifs complexes et détaillés des yeux de couleur foncée ne peuvent être révélés que sous une 
lumière NIR et c’est pourquoi une image d’iris obtenue à longue distance est beaucoup moins précise. Si 
on obtient une image d’iris à l’aide d’une lumière visible, les motifs de l’iris des yeux de couleur foncée 
seront pratiquement invisibles. La sclérotique, la couche protectrice extérieure blanche et opaque de 
l’œil, peut également être utilisée pour identifier les humains. Le processus de segmentation de l’image 
de la sclérotique comprend le sous-échantillonnage de l’image, la conversion de l’espace couleur HSV, 
l’estimation de la région de la sclérotique, la détection de l’iris et de la paupière, le raffinage des limites de 
la paupière et de l’iris, la création d’un masque et le suréchantillonnage du masque. La région de la 
sclérotique est estimée à l’aide de la meilleure représentation entre deux techniques fondées sur les 
couleurs.  
 
 
Évaluation du rendement des technologies ACDB basées sur les empreintes digitales GenKey   
 
Technologie GenKey 
 
GenKey, un important fournisseur de solutions pour l’amélioration de la confidentialité des données 
biométriques, a développé un algorithme biocryptique qui fait le pont entre la cryptologie et les données 
biométriques. Cet algorithme breveté convertit une image biométrique en clés cryptographiques 
compatibles avec l’infrastructure à clés publiques (ICP) qui sont irréversibles et ne partagent aucune 
relation mathématique avec les sources biométriques qu’elles représentent. Ses solutions peuvent être 
appliquées à une variété de contextes, y compris l’éducation, l’homologation et les soins de santé. 
L’algorithme GenKey offre un moyen d’enregistrer et de contrôler des individus en se basant sur les 
renseignements biométriques comme les empreintes digitales. L’algorithme offre diverses options entre 
la vitesse de reconnaissance, la précision et la confidentialité des données biométriques.  
 
Gabarit de caractéristiques GenKey par rapport aux enregistrements de clé d’identification   
 
L’algorithme GenKey peut effectuer deux types d’enregistrement. Dans le cas de l’enregistrement du 
gabarit de caractéristiques, les caractéristiques discriminantes des images d’empreintes digitales sont 

extraites et stockées dans un gabarit 
de données biométriques pour un 
individu donné. Le gabarit des 
caractéristiques est stocké pour usage 
ultérieur et l’image biométrique peut 

être supprimée. L’enregistrement de clé d’identification permet aussi d’extraire des caractéristiques 
discriminantes des images d’empreintes digitales, mais il convertit les caractéristiques en une valeur 
numérique qui représente les données biométriques de l’individu. À la fin de l’enregistrement d’une clé 
d’identification, la clé (valeur numérique) est stockée et l’image biométrique et le gabarit de 
caractéristiques peuvent être supprimés. Ce type d’enregistrement est le centre d’intérêt de l’évaluation 
du rendement d’IBG. 
 
IBG a mis à l’essai deux types de clé d’identification GenKey : 
 
 Les clés d’identification standard offrent un rendement semblable au rendement des 

enregistrements du gabarit de caractéristiques. 
 Le désavantage des clés d’identification flexibles est la taille et la précision des clés.   
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IBG a évalué le rendement des clés d’identification standard, de même que celui des clés d’indentification 
flexibles de 12, 25, 56 et 107 octets.  
 

 Gabarit de caractéristiques  
(pas une technologie ACDB) 

Clé d’identification 
standard  
(technologie ACDB) 

Clé d’identification 
flexible 
(technologie ACDB) 

Précision Les enregistrements des 
caractéristiques offrent le rendement 
le plus fiable.  

Les clés d’identification 
standard fonctionnent 
avec des taux d’erreurs 
peu élevés 
comparativement aux 
gabarits de 
caractéristiques.  

Les clés d’identification 
flexibles offrent une 
variété d’options de 
précision en matière de 
rendement. Les clés 
plus grosses offrent une 
précision semblable aux 
clés standard.  

Confidentialité Offre une certaine confidentialité 
pour les empreintes digitales; l’accès 
à un gabarit de caractéristiques ne 
donne pas à un utilisateur malveillant 
la capacité de reconstruire 
l’empreinte digitale originale. Avec 
une connaissance du processus de 
création du gabarit de 
caractéristiques GenKey, un 
utilisateur malveillant pourrait 
accéder aux renseignements 
généraux relatifs à la structure de 
l’empreinte. 

Les clés d’identification offrent un avantage de 
confidentialité par rapport à l’enregistrement de 
gabarits de caractéristiques. Un utilisateur 
malveillant ayant accès à une clé d’identification 
ne peut pratiquement pas régénérer les 
caractéristiques des empreintes digitales ou 
extraire des renseignements détaillés relatifs à la 
structure de l’empreinte. La technique utilisée pour 
convertir le gabarit de caractéristiques en une clé 
est semblable à une fonction cryptographique 
unidirectionnelle. Il est facile de calculer une clé 
d’identification à partir d’un gabarit de 
caractéristiques, cependant il est impossible, sur le 
plan des calculs, de renverser le processus. 

Débit de traitement Les enregistrements de 
caractéristiques permettent les 
recherches les plus rapides. 
L’algorithme GenKey est en mesure 
d’effectuer des millions de 
correspondances du gabarit de 
caractéristiques par seconde à l’aide 
de matériel informatique normal.  

Bien que pas aussi efficace que la correspondance 
des gabarits de caractéristiques, la vérification des 
clés d’identification peut aussi être effectuée assez 
rapidement à l’aide de matériel informatique 
ordinaire. GenKey procède à l’estimation de 
centaines de milliers de vérifications par seconde. 
La vitesse de correspondance augmente (c.-à-d. 
un ralentissement) au fur et à mesure que des 
seuls de correspondances plus strictes sont 
appliqués.  

Taille type de la clé 128-256 octets 64-128 octets 12-107 octets 

 
Données d’essai du GenKey  
 
IBG a utilisé une banque d’environ 6 000 images d’empreintes digitales plates (index gauche et droit) 

provenant de 1 200 sujets, 
lesquelles ont été 
recueillies à l’intérieur. Les 
images des empreintes 
digitales ont été recueillies 
à l’aide d’un Cross Match 
Verifier de 500 ppp. 
Chaque sujet a donné 

deux échantillons par doigt lors de la première visite. Par ailleurs, environ 650 des 1 200 sujets ont offert 
deux échantillons par doigt lors de leur deuxième visite, laquelle a eu lieu environ un mois après la 
première.  
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Processus d’enregistrement et de reconnaissance GenKey  
 
À l’aide d’une trousse de développement de logiciel (SDK) fournie par GenKey, IBG a développé une 
application personnalisée qui a permis d’extraire les caractéristiques, de créer un gabarit et de créer une 
clé d’identification. Les deux empreintes de l’index devaient s’être enregistrées afin que la saisie soit 
considérée un succès. IBG a aussi développé une application personnalisée qui effectuait la 
correspondance en bloc. Les images d’empreintes digitales obtenues lors de la deuxième visite ont été 
utilisées pour la reconnaissance (p. ex. : comme images de sondage) et ont été comparées aux données 
de la première visite.   
 

 
 
En plus d’utiliser l’algorithme GenKey pour traiter les données, IBG a procédé au traitement des mêmes 
ensembles de données d’empreintes digitales avec un algorithme largement adopté basé sur les 
empreintes et points caractéristiques Neuortechnology VeriFinger, version 6.3. L’approche de traitement 
VeriFinger était équivalente à l’approche GenKey décrite ci-dessous. La comparaison et le contraste des 
résultats GenKey et des résultats VeriFinger permettent d’obtenir un cadre général de référence pour 
valider la viabilité commerciale de la technologie des clés d’identification GenKey. 

Processus 
d’enregistrement 
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Les volumes de traitement sont illustrés ci-dessous.  
 

 GenKey  VeriFinger 6.N 
Sujets 650 650 

Comparaisons 
acceptables  

456 459 

Comparaisons 
imposteurs  

550 976 560 741 

 
Résultats des essais GenKey  
 
En se fondant sur les processus de collecte et de comparaison décrits ci-dessus, les mesures suivantes 
ont été obtenues :  
 

Mesures de convivialité Mesures de précision 
 Taux d’échec d’encodage 

(FTE) 
 Taux d’échec d’acquisition 

(FTA) 
 Temps de traitement 

 Taux de fausse correspondance 
(FMR) 

 Taux de fausse non-
correspondance (FNMR) 

 Distribution des erreurs par sujets 

 
Échec de 
l’enregistrement  

Tentatives d’enregistrement Compte FTE Taux FTE 

VeriFinger 6.3 2 448 42 1,72 % 

Clé d’identification 2 448 45 1,84 % 

Processus de 
reconnaissance 
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GenKey 

 
Échec d’acquisition Tentatives d’encodage de 

reconnaissance 
Compte FTA Taux FTA 

VeriFinger 6.3 1 841 1 0,05 % 

Clé d’identification 
GenKey  

1 841 66 3,59 % 

Les résultats démontrent que les taux d’échec d’encodage (FTE) de GenKey et de Verifinger sont 
pratiquement équivalents, tandis que le taux d’échec d’acquisition (FTA) de GenKey est de beaucoup 
supérieur à celui de VeriFinger. Cela permet de mettre en évidence le concept que GenKey utilise des 
images de haute qualité, lesquelles sont validées en temps réel au point de saisie.   
 

 
 
Une évaluation du rendement comparative avec un ensemble de données difficiles démontre la viabilité 
des technologies ACDB commerciales utilisant les empreintes digitales. Le rendement des technologies 
ACDB est très semblable de celui d’un coupleur fondé sur les points caractéristiques mis à l’essai par 
NIST et largement déployé. 
 
Pour de nombreux systèmes biométriques, certains sujets obtiennent des taux de fausses 
correspondances plus élevés que d’autres. IBG a analysé la distribution de fausses correspondances 
chez les sujets. Les taux de fausses correspondances spécifiques aux sujets (cumulés à partir de tous 
les types et de toutes les tailles de clé d’identification et mesurés à un seuil type de 0,45) se situaient 
aussi haut que 4,04 % et aussi bas que 0,00 %. Bien que les taux de fausses correspondances 
décroissent généralement lorsque la taille des clés augmente, dans certains cas les sujets ont connu des 
taux de fausses correspondances plus élevés avec de plus grosses clés. Par exemple, 251 des 457 
sujets ont connu des taux de fausse correspondance plus élevés avec des clés d’identification de 
56 octets qu’avec des clés de 25 octets.  
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Conclusions  
 
Les conclusions suivantes peuvent être tirées de la présente étude :  
 
 Les aspects du rendement de la reconnaissance non-coopérative de l’iris, y compris le taux élevé 

d’enregistrement et de fausses non-correspondances, compliquent son utilisation comme technologie 
ACDB.  

 La saisie de reconnaissance de l’iris contrôlée ou les images d’iris de haute qualité accroîtront 
l’usage de l’iris comme technologie ACDB. 

 Une évaluation du rendement comparative et un ensemble de données difficiles démontrent la 
viabilité des technologies ACDB commerciales utilisant les empreintes digitales. 

 Le rendement de GenKey est très semblable à celui d’un coupleur fondé sur les points 
caractéristiques mis à l’essai par NIST et largement déployé. 

 Les personnes chargées de la mise en œuvre devraient étudier comment incorporer les approches 
fondées sur les clés à l’architecture de leurs applications. 
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1 Background and Objectives 

 
 This document is the Study Report for PSTP 02-0351BIO, Biometric Data Safeguarding Technologies Analysis 
and Best Practices.  
 
Biometrics is one of two approved Communities of Practice (CoPs) under Public Security Technical Program’s 
(PSTP’s) Surveillance, Intelligence, and Interdiction (SII) Domain. SII encompasses capabilities that allow Canada 
to monitor the security environment, understand the threats to national security, and direct an effective and 
proportionate response to deter, disrupt, or defeat threats to Canada. Biometrics can assist these efforts by using 
technology to capture biometric samples, perform feature extraction or dataset creation, and perform one-to-one or 
one-to-many searches to identify or confirm the identity of individuals.1  
 
One of the main goals of PSTP’s Biometrics CoP is to evaluate, analyze, and implement biometric technologies that 
enhance national capabilities in access control, identity verification, and e-Commerce security in a manner that is 
consistent with Canadian laws and acts. This is done in collaboration with the appropriate Government of Canada 
agencies and departments responsible for national security, border control and security, and law enforcement and 
immigration. This effort will also be leveraged through the Memorandum of Understanding (MOU) that establishes 
collaborative science and technology (S&T) with the United States Department of Homeland Security. 
 
The rapid progress of biometrics technology in the last few years and the ease with which biometrics data can be 
acquired has resulted in the accumulation of large varying databases of biometrics information. This trend will 
continue in the future, with databases growing at an ever-increasing rate. The purpose of the Study is to examine 
some of the issues surrounding the sharing and safeguarding of biometric data in the Canadian Public Security 
context writ large. Throughout the study, the modality focus will be on iris biometrics (prime focus) and fingerprints 
(secondary).  
 
The primary objective of this work is to support the Biometrics CoP by leading scientific studies that identify and 
evaluate biometric technologies with respect to their ability to be used securely (in terms of safeguarding biometric 
databases). These new biometric technologies and associated data safeguarding capabilities must be consistent with 
the Government of Canada’s dual prosperity and security mandates, and must consider legal, ethical, cultural, and 
privacy issues. 
 
Biometric privacy enhancing technologies (PETs) are among the most promising technologies for data safeguarding. 
These technologies leverage biometric information to improve and ensure personal privacy while protecting 
sensitive information and assets. PETs can be categorized as follows:  

 
 Untraceable Biometrics – defined by Dr. Ann Cavoukian, Ontario Privacy Commissioner, as a new class of 

emerging privacy enhancing technologies such as biometric encryption 
 Anonymous Biometrics – a system where biometric data are not connected to any personal data; biometric data 

can be taken to another system to connect with personal information 
 Revocable (“Private”) Biometrics – allow people to have multiple biometric identities using the same 

biometric information; identities can be used independently or anonymously 
 
Study PSTP 02-0351BIO addresses Biometric Data Safeguarding Technologies Analysis and Best Practices through 
the following tasks.  
 
 Review the emergence of biometrics for defence and security and identify the issues surrounding data sharing 

and safeguarding 
 Compare and contrast biometric technologies for biometric data safeguarding that are currently in use or 

planned for use in other national and international jurisdictions 
 Evaluate the applicability of these biometric technologies and associated data safeguarding constraints in terms 

                                                 
1 http://www.css.drdc-rddc.gc.ca/pstp/proj-prop/call-appel/biometrics-biometrie/biometrics-biometries00-eng.asp 
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of supporting cross-jurisdictional public security environments 
 Evaluate state-of-the-art biometric technologies and their vulnerabilities in terms of protecting identity and 

complying with federal privacy standards and policies  
 Survey and evaluate associated issues of interoperability, database sharing, and format sharing internationally 

and interdepartmentally, and identify any emerging biometric technologies (e.g., multilevel security solutions) 
that may offer potential solutions 

 Address issues of cost, Canadian privacy policy, and Technology Readiness Level (TRL) of these data 
safeguarding technologies or procedures, with timeframe projections for implementation 

 
The Lead Federal Department for the Study is Canada Border Services Agency (CBSA). Addition partners include 
the following: 
 
 Royal Canadian Mounted Police 
 Transport Canada  
 Defence Research and Development Canada (DRDC) – Toronto 
 Office of the Information and Privacy Commissioner of Ontario 
 University of Toronto 
 Indiana University-Purdue University Indianapolis (IUPUI) 
 IBG-Canada (Study Report author)  
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2 Biometric Data Safeguarding in Defence and Security Applications 
 

Emergence of biometric technology in defence and security applications has resulted in the creation of large-scale 
datasets of biometric information of both national and international scale and presenting a new set of challenges 
regarding privacy and data safeguarding of personally identifiable datasets. Biometric datasets represent very 
sensitive personally identifiable information. When used to authenticate a subject’s transactions, they could be 
misused to track the subject’s actions and movements. In the case of fingerprints, biometric datasets could even be 
used to falsely incriminate the subject in a physical crime. This section examines the types of biometric technology 
prevailing in defence and security applications and identifies potential threats to security and privacy surrounding 
data sharing and safeguarding in biometric-enabled applications.  
 
2.1 Biometric Technologies: Operation, Strengths, and Weaknesses 
 
Leading biometric technologies for defence and security scenarios include fingerprint recognition, face recognition, 
and iris recognition. The basic operations, strengths, and weaknesses of each technology are discussed below. 
 
2.1.1 Fingerprint 
 
Fingerprint technology utilizes the distinctive features to identify or verify the identity of individuals. Fingerprint 
recognition is the most commonly deployed biometric technology, used in a broad range of physical and logical 
access applications. Fingerprint recognition refers to use in either 1:1 verification or small-scale identification 
against hundreds or thousands of enrolled records. Large-scale systems that match millions of fingerprints are 
referred to as AFIS (automated fingerprint identification systems). AFIS implementations are much more complex 
than 1:1 fingerprint implementations, though defence and security applications often deploy both 1:1 and 1:N 
systems.  
 
Fingerprint systems are comprised of image acquisition hardware, image processing components, template 
generation and matching components, and storage components. These components can be located within a single 
peripheral or standalone device, or may be spread between a peripheral device, a local PC, and a central server. 
High-level strengths and weaknesses are shown in Figure 1. 
 

Fingerprint: Strengths  Fingerprint: Weaknesses  

 Proven technology capable of high accuracy 
 Performance (accuracy, throughput) of leading 

technologies is well-documented and understood 
 Ability to enroll multiple fingers; exceptionally high 

accuracy for ten print collections  
 Ergonomic, easy-to-use devices 
 Fingerprint data is almost universally interoperable, 

facilitating searches against watchlists  

 Performance can deteriorate over time 
 Association with forensic applications 
 Users can intentionally damage fingerprints, reducing 

performance  
 Implementation of large-scale systems requires highly 

specialized expertise for performance tuning and 
optimization 
 

Figure 1: Fingerprint Strengths and Weaknesses 
 
The five stages involved in fingerprint verification and identification are image acquisition, image processing, 
location and encoding of distinctive characteristics, template creation, and template matching.  
 
Fingerprint systems acquire one or more fingerprint images and convert images to digital format. Image processing 
subroutines eliminate gray areas from the image by converting the fingerprint image’s gray pixels to white and 
normalizing ridge width and flow. Fingerprint recognition systems utilize proprietary algorithms to map the absolute 
and relative position of minutiae, the distinctive points found in fingerprint ridges. Large-scale systems also use 
ridge flow information. Algorithms compare template data from one or more fingerprints, working through 
permutations of minutiae offsets to identify and score similarities. The resulting acceptance or rejection of the user’s 
access is based on reaching an acceptable level of correlation between the two templates. A correlation threshold is 
necessary because subtle changes in fingerprint placement and minutiae recognition mean that no two fingerprint 
templates will be exactly alike. 
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Positive and negative error rates, as well as enrollment failure rates, are low for most fingerprint devices and 
systems, assuming that multiple fingerprints are acquired on enrollment. A small percentage of users, varying by the 
specific technology and user population, are unable to enroll in some fingerprint systems. Furthermore, certain 
demographic groups – such as elderly populations and manual laborers – often have lower quality fingerprints and 
are more difficult to enroll. Although the fingerprint is a stable physiological characteristic, a variety of factors can 
cause the performance of some fingerprint recognition technologies to worsen drastically over time, particularly 
when a limited number of fingerprints are used for matching. Although high-quality enrollment improves long-term 
performance, users who work with their hands are likely to see increased error rates over time. 
 
 Fingerprint recognition technology includes peripheral devices, imbedded devices, wall mounted devices, and large 
units designed for heavy-duty operation. For border control deployments, the primary question in terms of device 
selection is whether to deploy single-finger readers or ten-print devices (see Figure 2). US-VISIT was initially 
deployed with single-finger readers, and migrated to ten-print devices when it became clear that more than two 
fingerprint positions would be necessary to maintain acceptable levels of accuracy and match speed for that 

deployment’s immense transaction 
volume. Single-finger readers are suited 
for deployments in which no more than 
two positions (e.g. left and right index) are 
acquired. Increasingly, agencies are 
making the investment in ten-print devices 
capable of acquiring all ten finger 
positions in three placements (left 4, right 
4, and thumbs). The collection of ten 
prints not only reduces collection errors 
(e.g. swapping left for right), but it 

increases the scalability, accuracy, and speed of fingerprint matching by orders of magnitude relative to 1- or 2-
position systems.  
 
Large-scale defence and security applications deploy AFIS technology in their identification systems around the 
world as the technology is a proven, central, and established part of law enforcement and security check processes. 
Although biometrics cannot solve the problem of fraudulent identity documents being used to establish an identity, 
they can address the problem of duplicate identities creation. Such systems will provide both AFIS and 1:1 
functionality. 
 
2.1.2 Face Recognition  
 
Face recognition technology utilizes distinctive facial features to verify or identify individuals. Face recognition is 
primarily deployed in 1:N applications, though improvements in system and workflow design (as well as digital 
imaging) have increased the performance of face recognition in 1:1 applications. Used in conjunction with ID card 
systems, booking stations, and for various types of surveillance operations, face recognition’s most successful 
implementations take place in environments where cameras and imaging systems are already present. 
 
Face recognition systems can range from software-only solutions that process images acquired through existing 
cameras (e.g. still or CCTV) to full-fledged acquisition and processing systems with dedicated cameras and 
illuminators. In some face systems, the core technology is optimized to work with specific cameras and acquisition 
devices. More often, the core technology is designed to enroll, verify, and identify face images acquired through 
various methods such as static photographs, web cameras and surveillance cameras. Face recognition systems are 
not often integrated into 1:1 physical access applications and are more likely to be used in large-scale identification 
or surveillance. High-level strengths and weaknesses are shown in Figure 3.  
 

Face Recognition: Strengths  Face Recognition: Weaknesses  

 Does not require user training or effort  
 Can often leverage existing image datasets and existing 

photograph processes 

 Susceptible to high false non-match rates in 1:1 and 1:N 
applications 

 Changes in acquisition environment reduce matching 

  
Figure 2: Single-Finger and Ten-print Devices 
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 Capable of identification at a distance 
 Capable of rapid 1:N identification with relatively little 

processing power 
 Performance improves hand-in-hand with camera quality 

and image resolution  

accuracy  
 Changes in physiological characteristics reduce matching 

accuracy 
 Lighting, camera angle reduce matching accuracy  

Figure 3: Face Recognition Strengths and Weaknesses 
 
Face recognition technology is based on the standard biometric sequence of image acquisition, image processing, 
distinctive characteristic location, template creation, and matching. Face recognition technology can acquire faces 
from almost any static camera or video system that generates images of sufficient quality and resolution. Ideally, 
images acquired for face recognition will be acquired through high-resolution cameras, with users directly facing the 
camera, and with moderate lighting of the face.  
 
Face images are normalized to overcome variations in orientation and distance. In order to do this, basic 
characteristics such as the middle of the eyes are located and used as a frame of reference. Once the eyes are located, 
the face image can be rotated clockwise or counter-clockwise to straighten the image along a horizontal axis. The 
face can then be magnified, if necessary, so that the face image occupies a minimum pixel space. Once an image is 
standardized according to the vendor’s requirements, the core processes of distinctive characteristic location can 
occur. Features most often utilized in face recognition systems are those least likely to change significantly over 
time: upper ridges of the eye sockets, areas around the cheekbones, sides of the mouth, nose shape, and the position 
of major features relative to each other. Face recognition is not as effective as fingerprint or iris recognition in 
identifying a single individual from a large dataset. A number of potential matches are generally returned after large-
scale face recognition identification searches. For example, a system may be configured to return the 10 or 100 most 
likely matches on a search of a 1m-person dataset. A human operator would then determine whether any candidates 
are legitimate matches. 
 
Relative to fingerprint and iris recognition, face recognition systems encounter higher false non-match rates over 
time, as the effects of aging seem to impact face recognition performance to a greater degree than fingerprint or iris 
recognition. The performance gap narrows if very high-resolution face images are used for enrollment and matching. 
Assuming that face images are acquired from a fixed distance under consistent lighting and background conditions, 
the technology is substantially more accurate than is perceived. Simple changes in user appearance can to have an 
impact on systems’ ability to reliably identify enrolled users. Changes in hairstyle, makeup, or facial hair, or 
addition or removal of eyeglasses, can cause users to be falsely rejected. Emerging techniques, such as 3D 
reconstruction and modeling, have led to the development of more robust algorithms which may be less susceptible 
to such changes. 
 
In an effort to reduce environmental impact on accuracy, deployers and practitioners have become much more 
cognizant of the role of image quality in face recognition accuracy. When face recognition systems perform poorly 
(e.g. encounter high false non-match rates), the culprit is often the imaging process as opposed to the matching 
algorithm. Deployers now, whenever possible, integrate real-time face image quality validation at the point of 
capture. By enforcing the quality of input images, the overall accuracy and scalability of face recognition systems 
improves substantially. This approach also brings face recognition system design closer to that of fingerprint and iris 
systems, both of which implement rigorous control on input image quality.  



 

DRDC CSS CR 2011-29 
 

2.1.3 Iris Recognition  
 
Iris recognition technology encodes and matches iris patterns to identify enrolled users. Iris recognition systems are 
comprised of collection devices and encoding / matching engines. Collection devices (see Figure 4) include 
advanced imaging and optics components along with one or more infrared illuminators. Images may be encoded and 
matched on the device, on a host PC, or on a central server.  

 
Iris recognition technology requires the acquisition of a high-resolution, infrared-illuminated image to effectively 
locate and encode iris data. Iris recognition technology is imbedded in peripheral cameras no larger than typical web 
cams, and is also build into wall-mounted and kiosk-based form factors for access control and identification 
applications. The latter types have been deployed successfully in air travel applications, and are generally capable of 
acquiring higher-quality iris images (and therefore providing higher degrees of accuracy).  
 
Once the iris is located and segmented, a grayscale image is used for feature extraction. Characteristics derived from 
the iris include the orientation and spatial frequency of furrows and striations. Iris recognition is recognized for (1) 
resistance to false matching regardless of dataset size and (2) rapid searches of large datasets. Assuming that 
thresholds are properly implemented, false positive matches should be exceptionally rare. In fact, some iris systems 
are implemented such that all matches are assumed to be positive. The tradeoff is that iris systems may be more 
prone to false negatives (in which an enrolled subject is falsely not identified) than, for example, fingerprint 
systems. High-level strengths and weaknesses are shown in Figure 5. 
 

Iris Recognition: Strengths  Iris Recognition: Weaknesses  

 Exceptionally resistant to false matching 
 Default operation is identification mode  
 High stability of characteristic over lifetime 
 Hands-free operation 
 Real-time searches against large datasets (e.g. 10m irises) 

are possible with modest CPU loads  

 Acquisition of iris image requires more training and 
attentiveness than most biometrics 

 User discomfort with eye-based technology 
 Glasses can impact performance 
 Propensity for false non-matching or failure to capture  

Figure 5: Iris Recognition Strengths and Weaknesses 
 
The acquisition process, and the effort required on the part of the user, differs from device type to device type. More 
so than in many biometric systems, users must be cognizant of the manner in which they interact with the system: 
iris acquisition requires fairly precise positioning of the head and eyes. Several types of devices are used in iris 
recognition applications, some of which are better suited to usage in border applications than others. Regardless of 
the acquisition device, individuals are required to position themselves at a specified distance from the camera; 
distances range from a few inches to a few feet. Certain devices may prompt the user with verbal instructions.  
 

                                                 
2 http://www.aoptix.com/biometrics/AOptixBiometrics-DS6P.pdf 

   

Figure 4: Iris Recognition Form Factors2 
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The iris recognition market has undergone a radical transformation since the late 2000’s. Up to that point, a single 
vendor dominated the market for matching technology, and capture devices had to deliver images that conformed to 
this vendor’s requirements. Since then, numerous iris recognition algorithms have become commercially available; 
independent testing has demonstrated that many newer algorithms are roughly on par with more established 
algorithms in terms of speed and accuracy. Further, numerous capture devices have come to market – ranging from 
low-end peripherals to high-end stand-off devices – greatly expanding the range of applications for iris recognition 
technology. Perhaps most importantly, current-generation iris systems collect and store iris images as opposed to 
proprietary templates. Therefore one of the largest impediments to iris recognition adoption in defence and security 
applications – that of reliance on proprietary data formats – is a non-issue in most modern iris recognition systems.  
 
2.1.4 Multiple biometrics 
 
Multiple biometric solutions involve the submission of more than one biometric characteristic for verification or 
identification. These submissions can be simultaneous or serial; a second biometric sample may be required if a 
primary biometric is rejected, or may be required for each verification or identification. Multiple biometric solutions 
can be designed to decrease FTE rates, as users unable to enroll in one biometric technology will generally be able 
to enroll in a second technology. This reduces the need for non-biometric fallback processing. Multiple biometrics 
can be used to increase security by requiring that an imposter defeat two biometrics to be verified; they can also 
increase convenience by allowing an individual to verify on a secondary biometric if the first biometric fails.  
 
Using multiple biometrics also allows for the introduction of sophisticated decision logic when verifying or 
identifying individuals. Beyond a simple yes/no decision in which an individual must match in two systems in order 
to be verified, “fusion systems” can be implemented in which a near-match in one system allows a lower score in a 
second system to constitute a match. Similarly, a very low score in one biometric system may require a very high 
score in a second system in order for an individual to be declared a “match”. By combining raw scores from vendor 
technologies, and adjusting thresholds based on application-specific requirements, deployers can implement more 
flexible systems. In addition, using multiple biometrics during enrollment may allow for more rapid and more 
accurate searches. If one technology is used as a gross classifier, such that a technology eliminates 60% of 
individuals in a dataset in a rapid 1:N search, then a more robust 1:N technology can be used to search the remaining 
40% of individuals for duplicates. 
 
Many large-scale civil and criminal identification systems utilized in defence and security applications process 
multiple biometric facets during enrollment. This results in creation of biometric profiles for large numbers of 
individuals that enable future functionality through different technology combinations. Multimodal biometric 
systems can mitigate certain performance and robustness limitations associated with single-modality systems. A 
multimodal biometric system based on non-correlated traits is expected to improve matching accuracy and to 
increase protection against spoof attacks. 
 
Civil ID, inclusive of passport, national ID, and entitlement applications, is the strongest application for multiple 
biometric systems. The use of multiple biometrics in complex programs such as US VISIT and registered traveler, as 
well as the allowance for multiple biometric solutions in passport applications, underscore the viability of this 
approach. Civil ID applications are mandatory and must be capable of operating for the very large majority of 
potential users. In addition, civil ID applications may have a large number of enrollees, such that multiple biometric 
systems may be necessary to provide sufficient accuracy and response times. Civil ID applications may need to 
search watchlists with fingerprint, face, and even iris data, providing an additional rationale for acquiring multiple 
biometrics upon registration. 
Access control, particularly to high-security facilities in unattended environments, is a strong environment for 
multiple biometric solutions. Such applications are generally unattended and must be capable of operating for an 
entire population. A challenge in this application is to ensure that the device can acquire data quickly enough to not 
impede throughput unnecessarily. Criminal ID applications have already begun to migrate to multiple biometrics 
systems, using face recognition in conjunction with fingerprint.  
 
2.2 Biometric Data Sharing and Safeguarding Considerations  
 
The scale and complexity of biometric samples gathered by national and international systems are increasing and 
becoming widespread. The current maturity level of biometrics has facilitated the use of biometrics in a wide range 
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of government applications, while much work remains in devising acceptable ways of controlling the use, storage, 
and exchange of biometric data and personally identifiable information. This section examines risk and threat areas 
associated with data sharing, and presents safeguarding techniques currently ongoing in research and deployments.  
 
2.2.1 Privacy Threats  
 
Privacy threats related to biometrics have been discussed extensively. Major privacy risk areas are described as 
followed:  
 
 The ability to cross match data subjects across different services or applications by comparing biometric 

templates.  
 The possibility to extract sensitive information from the stored biometric data 
 The extension of application scope of biometric technology outside consent of the owner  
 
The first threat concerns the persistence and uniqueness of biometric characteristics that allows the enrollee to be 
linked between different datasets. For example, an attacker could link different financial service records across 
different banks’ datasets to one specific customer to illegally obtain the customer’s financial condition or investment 
plan. The second threat concerns linkage between one’s biometric data with other personally identifiable 
information, such as subject’s ethnic background, health records, or visa status. Such data could in principle be 
abused by healthcare insurance providers; utilizing biometric templates intended for patient identification in a 
hospital could be used to differentiate in insurance premiums. Similar threats could occur in other application areas 
as well. 
 
Other privacy risk associated with biometrics is often referred to as function creep. If the application scope of 
biometric technology is not well defined and restricted, its use may expand to other applications or services. For 
example, an application initially intended to prevent misuse of municipal services may gradually be extended to 
rights to buy property, to travel, or serve in armed forces. As a consequence, data subjects that would agree to use 
biometrics for the initial application would be forced to use biometrics for other applications. 
 
2.2.2 Security Threats  
 
The various security threats associated with data sharing and safeguarding can be described by potential attacks on 
various components of a biometric systems.  
 
Risks during biometric data capture  
 
The most prominent security threat during biometric data capture is enrollment of a bogus biometric characteristic. 
Spoofing attack is the fabrication and presentation of a fake physical biometric characteristic during enrollment 
and/or verification. Some biometric characteristics are harder to forge, such as the iris, while others are easier to 
forge, such as face or fingerprint. Since biometric information cannot be regarded as secret, the original biometric 
characteristic can be obtained with or without the permission or cooperation of the data subject. The sensor spoofing 
attack can be implemented as a coercive or impersonation attack. A coercive attack is an attack where the authorized 
data subject’s biometric data is presented in an illegitimate scenario. An impersonation attack involves changing 
one’s appearance so that measured biometric data matches an authorized individual. Impersonation attacks pose 
greater risk in regards to data security and safeguarding through tampering with the integrity of the biometric dataset 
with fake samples and statistics. In addition, an attacker can steal templates from a dataset and construct a synthetic 
biometric sample that passes authentication. Multiple biometric systems reduce the exposure to an impersonation 
attack through checking for consistency between different modalities.  
 
Risks during data storage 
 
Biometric dataset inherently poses various security threats related to its temperament. Biometric templates and data 
can be accessed illegally, or could be replaced or changed. In addition, biometric dataset, once compromised, 
biometrics cannot be updated or reissued in the same manner as passwords or ID card. The unauthorized access or 
modification of biometric data may not only lead to security threats, but could also extend to threats in the privacy 
domain, such as cross matching of different biometric datasets.  



 

DRDC CSS CR 2011-29 
 

 
Risks during data transmission 
 
Biometric data, scores, and decision are transferred in open and distributed systems between various agencies. 
Attacks can focus on changing algorithms or exchange protocols of the system by means of a Trojan horse attack. In 
addition, biometric dataset during data transmission is potentially vulnerable to eavesdropping, replay, brute force, 
and man-in-the-middle attacks3 .  
 
2.2.3 Privacy Requirements 
 
Safeguarding data privacy in a biometric context is a challenging task. These requirements must be followed in 
order to establish and deploy privacy-sympathetic biometric systems.  
 
 Identity Privacy: Storage of biometric templates accompanied by other identity data results in significant 

privacy risks. The binding between biometric and other identity data allows malicious persons to link data 
subjects to applications beyond those using biometrics. Therefore, it is critical that the binding between 
biometric and other identity data is securely protected 

 
 Irreversibility: To prevent the use of biometric data for any other purpose than originally intended, the 

biometric data should be transformed in such a way that the biometric sample cannot be retrieved from the 
transformed representation. Such transform should be irreversible, without compromising the biometric 
verification performance. Irreversibility should hold even when several biometric templates are accessible from 
different applications, services, or datasets.  

 
 Unlikability: Tracking and tracing subjects across applications should be eliminated by ensuring that biometric 

templates used in various applications are unlikable. This guarantees that no adversary has a significant 
advantage over random guessing in determining whether two biometric templates are related or not; meaning 
that they were generated from the same source.  

 
2.2.4 Security Requirements  
 
 Confidentiality: Confidentiality ensures that information is not disclosed to unauthorized entities. In a 

biometric system, biometric data is stored and transmitted between various subsystems. Both storage and 
transmission of data should be protected against eavesdropping, unauthorized disclosure or modification of the 
data. This requires cryptographic techniques such as biometric encryption, or symmetric or asymmetric ciphers.  

 
 Integrity: Integrity is the property of safeguarding the accuracy and completeness of assets in a given dataset. If 

the integrity of a biometric reference or the result of the various processing algorithms and subsystems are 
untrustworthy, the verification outcome will also be untrustworthy. Therefore, cryptographic means to protect 
the integrity of the data, such as signatures or authenticated encryption and time stamping, are required.  

 
 Renewability and revocability: A strong security concern for biometric system relates to renewability and 

revocability of biometric templates. Individuals have a limited number of irises and fingers; identity theft 
renders corresponding biometric template as unusable for future use. Due to the persistence of biometric 
characteristics, a biometric template that is compromised once is compromised forever. The risk of 
compromised biometric templates can be mitigated for certain types of attacks by providing methods to allow 
renewable biometric templates. If various different biometric templates can be extracted from the same or 
similar biometric characteristic, the biometric template can be revoked and renewed in case it has become the 
subject of identity theft. 4 

 
2.2.5 Data Safeguarding Technique: Biometric Encryption 
 
                                                 
3 Buhan, I. (2008) Cryptographic keys from noisy data – Theory and applications.  
4 Breebaart, J.; Yang, B.; Buhan-Dulman, I. ; Busch, C.: Biometric Template Protection. The need for open standards, 
(Datenschutz und Datensicherheit) 2009 
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The goal of data safeguarding is to mitigate the risks of malicious errors and attacks to the biometric dataset. 
Meeting the privacy and security requirements in a biometric system is a complex and elaborate task. Data 
safeguarding tools related to biometric data transformations have been published in the literature. These solutions 
are called biometric encryption or biometric template protection.  
 
Biometric encryption is the process of using a characteristic of the body as a method to code or scramble/descramble 
data. Physical characteristics such as fingerprints, retinas and irises, palm prints, facial structure, and voice 
recognition are just some of the many methods of biometric encryption being researched today. Since these 
characteristics are unique to each individual, biometrics is seen as the answer to combat theft and fraud. Reason that 
this new technology is believed to be superior to the use of passwords or personal identification numbers (PINs) is 
that a biometric trait cannot be lost, stolen, or recreated. Encryption is a mathematical process that helps to disguise 
the information contained in messages that is either stored or transmitted in a dataset. There are three main factors 
that determine the security of the encryption system: the complexity of the algorithm, the length of the encryption 
key used to disguise the message, and safe storage of the key. Biometric encryption makes standard character 
encryption obsolete by replacing or supplementing the normal key characters with a personal identifier of the user 
that there can only be one perfect match for. Without this biometric key the information is inaccessible. 

There are two broad categories of encryption systems; single key, or symmetric, systems and two key, or public, 
systems. Symmetric systems utilize a single key for both the sender and receiver for the purpose of coding and 
decoding data. In 1972, IBM developed DES (Data Encryption Standard) which was adopted worldwide by 1977 as 
the most common single key system. The process of transmitting this type of key over such networks as the Internet 
is one of the major failures due to the vulnerability of a single key system to interception. Data transmission may be 
conducted over open networks instead of dedicated networks and single key systems do not offer a high enough 
level of security for such transmissions. This issue of security led to the development of public key system. Two-key 
systems use a public key to encrypt the data and a private key to decrypt the data. The public key systems allows 
better encryption than single key systems, however certification of the recipient of messages becomes an issue, 
which causes a hierarchy of certification to be developed resulting in a much slower processing time. Biometrics can 
aid in this process due to the inherent nature of using a physical trait of the desired recipient to decipher the 
message.5 

                                                 
5 http://www.emory.edu/BUSINESS/et/biometric/Biometrics.htm 
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3 Select Biometric Data Safeguarding Implementations  
 

The rapid advancement of biometric technology along with the ease with which biometrics data can be acquired has 
resulted in the accumulation of large datasets of biometrics information. However, reporting of best practices has 
been minimal in regards to data sharing and safeguarding. This section provides an overview of biometric 
deployments in national and international jurisdictions with an assessment framework for decision-making on the 
issues surrounding data safeguarding. Critical areas assessed include system requirements, risk factors, strengths and 
weaknesses of the deployed data safeguarding technologies, privacy issues, and performance. The objective is to 
provide deployers and decisions-makers with the full range of information necessary to implement secure and 
interoperable solutions in defence and security applications.  

3.1 Biometric Data Safeguarding Deployments by Application: Border Control 
 
Border control is the use of biometrics to identify or verify the identity of individuals entering or leaving a border at 
a given time. The biometrics is used to complement authentication mechanisms such as passports and government-
issued visas. Fingerprint is the most commonly deployed biometric technology in border control solutions, with iris 
and face recognition having gained much ground due to increased need for security in the recent years. Combination 
of these modalities is deployed for higher accuracy and greater flexibility.  
 
3.1.1 U.S. Visitor and Immigration Status Indicatory Technology (US-VISIT) 
 
The United States Visitor and Immigrant Status Indicator Technology (US-VISIT) is an immigration and border 
management system operated by the US Department of Homeland Security (DHS). The purpose of the program is to 
enhance the security of citizens and visitors, facilitate legitimate travel and trade, ensure the integrity of the US 
immigration system and protect the privacy of visitors. Put into operation on January 5, 2004, the program has been 
implemented across all major ports of entry within the 
United States including airports, seaports, land ports and 
US Consulates abroad. As one of the first full-scale 
mandatory biometric collection programs, US VISIT 
represents an excellent case study when considering the 
data sharing and safeguarding challenges associated with a 
large-scale data management system servicing multiple 
government organizations.  

 
Biometric data is collected from foreign nationals when 
they apply for visas at US consulates in their respective 
countries of origin. The system captures ten fingerprints 
and a face image of every enrollee. Fingerprints are run 
against national datasets including the DHS Automated Biometric Identification System (IDENT) as well as the 
FBI’s Integrated Automated Fingerprint Identification System (IAFIS) dataset in order to ensure that an individual 
does not have a previous criminal record and is not on a watchlist. Upon arrival to the US, foreign nationals provide 
fingerprint and face data again at all ports of entry as part of the verification process (see Figure 6) to insure that 
each individual is the same person to whom the initial visa was issued. The last implementation phase is collection 
of biometric data upon exit. DHS completed conducting pilot programs at 12 airports and 2 seaports and is 
implementing new biometric exit procedures based on these pilots for all non-U.S. citizens departing the United 
States as of 2010. US-VISIT is accessed by 30,000 users from federal, state, and local government agencies. 
 
IDENT is the primary repository of biometric information held by DHS in connection with its several and varied 
missions, including the US-VISIT initiative. IDENT is centralized and contains biometric, biographic, unique 
machine-generated identifiers, and encounter-related data during collection by federal, state, local, and international 
agencies. Biometric data includes fingerprints and photographs. Biographical data includes name, date of birth, 
nationality, and other personal descriptive data. The encounter data provides the context of the interaction with an 
individual including location, document numbers, and reason fingerprinted. Unique personal identifier is a new 

                                                 
6 Image extracted from U.S. Customs and Border Protection photographic archives 

 
Figure 6: US-VISIT fingerprint collection6 
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category of records used to link individuals with their encounters, biometrics, and other data elements. IDENT 
generates, stores, and retrieves data by unique number or sequence of numbers and characters in an effort to 
accurately identify and account for individuals upon all encounters with the system. The US-VISIT biometric data 
are currently in migration to conformance with ANSI/NIST-compliant format, specifically to extensible markup 
language (XML) as its primary data exchange method.  
 
The dataset is protected through multi-layer security mechanisms at physical, technical, and administrative levels. 
DHS facilities are limited through physical access control measures, confidentiality of communications between 
agencies are ensured through authentication of sending parties, and US-VISIT data are accessed only by personnel 
screened through background investigations commensurate with the level of access required to perform the duties. 
In regards to data retention and disposal, the biographic and biometric data collected by US-VISIT for which the 
statute of limitations has expired for all criminal violations or older than 75 years are purged. Fingerprint cards, 
which are created for the purpose of entering records in the dataset, are destroyed after data entry.7 
 
The US-VISIT program has garnered positive results. In fiscal year 2007, a total of 46,298,869 entries were 
recorded at air and sea ports. 235,857, or 0.5% of these entries, were identified as possible overstays due to no 
departure record. The manual vetting system led to 273 U.S. Immigration and Customs Enforcement arrests, and 
11,685 biometric watch-lists were recorded at the port of entries, which included individuals with criminal histories. 
United States Citizenship and Immigration Services also utilized the system to screen those who apply for 
immigration benefits, creating 31,324 hits.8  
 
3.1.2 EURODAC 
 
EURODAC – European Dactyloscopie – is a multi-national fingerprint dataset for identifying asylum seekers and 
anomalous border-crossers. Its participants include all EU Member States in addition to Norway, Iceland, and 
Switzerland. The dataset was constructed in an effort to reduce asylum-seekers attempting to process simultaneous 
claims for asylum in more than one EU country (referred to as “asylum shopping”). It consists of a centralized AFIS 
system located in Luxembourg that enrolls the fingerprints of first-time asylum seekers. The enrolled fingerprints 
are then checked against existing records in the dataset to identify multiple asylum applications. Information stored 
on the EURODAC dataset includes the asylum seekers’ fingerprints, date of submission, and country of first entry; it 
does not store names or photographs. Additionally, to ensure the protection and interoperability of transmitted data, 
the EU-wide system required the building of a secure network to transmit data between the Central Unit and the 
Member States. Additionally, the information is encoded and processed into ANSI/NIST-compliant format.  
 
Privacy concerns and protection of traveler information has influenced the development and data usage requirements 
of the EURODAC dataset. The EURODAC dataset only associates asylum seekers’ fingerprints to their date of 
submission, country of first entry, and not their actual names or face images. This process helps to only identify 
those individuals attempting to process simultaneous claims, and can limit the use of stored information for 
secondary purposes. The European Commission, however, proposed in July 2009 to allow Member States’ law 
enforcement authorities and Europol access to the EURODAC dataset to help investigations into terrorism and other 
serious crimes. The proposal has been met with criticisms by privacy advocates who question its legitimacy and 
necessity. Additionally, the European Data Protection Supervisor (EDPS) argues that the proper balance between the 
need for public safety and the right to privacy and data protection must be met. 
 
 
 
 
 
 
 
 
 
3.1.3 Biometrics Identification System (J-BIS) (Japan) 

                                                 
7 http://www.dhs.gov/files/programs/gc1180020923182.shtm 
8 Figures extracted from: http://www.cis.org/vaughan/USVISITNumbers 
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Japan Biometrics Identification System (J-BIS) is an automated identification and clearance system. It was designed 
to identify and clear incoming visitors to Japan using fingerprint and face recognition technology (see Figure 7). The 
system came online in November 2007, paralleled with the announcement that all foreign visitors to Japan, 
including foreign nationals with permanent residency, are required to be fingerprinted for identification purposes 
upon arrival at entry points such as airports and seaports. Fingerprint data is captured and searched against a national 
watchlist dataset for any historical criminal 
activity. 
 
The watchlist dataset stores a mixture of from 
one to ten rolled or plain fingerprints who are 
also of varying print qualities. The identification 
system supports 50 concurrent transactions with 
a maximum 10 seconds response time. J-BIS 
system adheres to the NIST’s Wavelet Scalar 
Quantization (WSQ) Gray-Scale Fingerprint 
Compression Specification for data exchange. 
While a search using biographic information 
such as name and passport number can be used 
to retrieve information from the dataset, the 
immigration officers are solely responsible for 
visually verifying the biographic search results 
against the biometric data at various points of 
entry.  
 
3.1.4 The Five Country Conference 

(FCC) Protocol 
 
In August 2009, the United Kingdom’s Border Agency (UKBA) announced its agreement to share fingerprint 
information with the governments of Canada, Australia, New Zealand, and United States in an effort to combat 
against identity fraud. In addition to UKBA, the other immigration authorities involved international data exchange 
are the Department of Immigration and Citizenship (DIAC) in Australia, Citizenship and Immigration Canada (CIC) 
and the Canada Borer Services Agency (CBSA), the DHS in the United States of America, and Immigration New 
Zealand (INZ). The Under the data sharing agreement, the UK would be able to swap fingerprint information on 
foreign criminals and asylum seekers with other countries’ respective fingerprint datasets, which are: 
 

 The Immigration and Asylum Fingerprint System (IAFS) of UKBA 
 The Biometric Acquisition and Matching System (BAMS) in Australia 
 The Automated Fingerprint Identification System (AFIS) in Canada 
 The IDENT System in the USA 
 The Immigration Biometric System (IBS) of New Zealand 

 
This provides officials the opportunity to identify and flag travelers attempting to evade identification from 
international and local authorities. Forum members of the Five Country Conference (FCC), who engage in ongoing 
strategic initiatives on immigration controls and border security, are responsible the development of this agreement. 
For the first year of the plan, each participating country was required to share 3,000 sets of fingerprints with the 
other partnering countries, with fingerprint sets increasing as the roll out progresses. 
 
All of the data exchanged will be conducted under Secure File Share Server (SFSS) hosted by the government of 
Australia.10 The data exchange happens in two stages. In the first stage, anonymized fingerprints with a unique 
reference number will be transferred for the purpose of searching against other countries’ fingerprint datasets. The 
second stage of data sharing will take place only in the instance of a fingerprint ‘match’ being identified, which 

                                                 
9 Image extracted from: http://biometrics.org/bc2008/presentations/150.pdf 
10 http://www.ukba.homeoffice.gov.uk/sitecontent/documents/aboutus/workingwithus/high-value-data-sharing-
protocol/pia.pdf?view=Binary 

 
Figure 7: Japan J-BIS system9 
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transfers biographical and other relevant data between the country that supplied the fingerprints and the country that 
identified a fingerprint match. The unique reference number is assigned to create a search code for the second stage 
of data sharing in case a fingerprint match occurs, from which the code enables the country to ascertain what data 
will be relevant to transfer in respect of that person. The data element that will be shared upon matching are as 
followed: 

 
 Date, location, and reason fingerprinted 
 Last name, first name, any other names 
 Date of birth, place of birth, nationality, and gender 
 Travel document number 
 Photograph, facial image, and/or scan of the travel document biodata page 

 
Fingerprints exchanged under the Protocol will be destroyed securely once the matching has taken place, whether or 
not a match is achieved. On cases where fingerprints are found to match, the countries will exchange such other 
information as relevant, proportionate, and lawful to exchange for their immigration and nationality purpose. 
 
3.2 Biometric Data Safeguarding Deployments by Application: Civil ID  
 
Civil ID is the use of biometrics to identify or verify the identity of individuals in their interaction with government 
agencies for the purpose of card issuance, voting, immigration or employment background checks. Common civil ID 
applications include voter registration, national ID and biometric passports. Biometrics is used to complement or 
replace authentication methods such as document provision, signature recognition, and manual photograph 
inspection. AFIS, face recognition and fingerprint are three most deployed biometric technologies in civil ID 
applications, with iris recognition slowly gaining market share. Civil ID applications require systems capable of 
performing large-scale 1:N identification, with AFIS providing the accuracy and scalability when combined with 
other biometric modalities.  
 
3.2.1 Gambia Biometric identification System (GAMBIS) 
 
The Gambia Biometric Identity System (GAMBIS)11 project is an integrated biometric identity system through 
which the government of Gambia captures biometric details for all citizens and aliens in the country. The Biometric 
Identity Card of the Gambia Immigration Department was launched on 18 August 2009, replacing its previous 
national identity card in circulation. Biometric data used by GAMBIS is thumbprint based, and applicants are 
required to submit both thumbprints at the time of 
enrollment. Additionally, card issuance requires citizens to 
present their birth certificate, Gambian passport, and 
certificate of registration, voter’s card, Seyfo certificate, 
village Alkalo’s certificate or certificate of naturalization. 
An individual’s data, including their biographic and 
biometric information is matched and captured in the 
national dataset. A National Identification Number (NIN), unique to each applicant’s fingerprint, is issued in 
conjunction. As the country’s next generation identification card, it enables its citizens and residents to confirm their 
identity based on their fingerprint and/or face data. Biometric documents issued for Gambia include national identity 
cards, residential permits, non-Gambian ID cards, and driver’s license.  
 
The GAMBIS project is one of the first biometric identity systems to issue multiple biometric identity documents, 
such as identity cards, passports, driver’s license, visas, under one platform by combining all these documents in a 
national population dataset. The project and data enrollment operates out of eight GAMBIS branches and four 
mobile units. As of March 2010, near 70,000 National IDs, 7,000 Residential Permits, 20,000 National Driving 
Licenses have been issued through the GAMBIS project. 12 
 
3.2.2 The Bangladesh Voter Registration Project  

                                                 
11 http://www.gambis.gm/ 
12 http://www.gambis.gm/news.html 
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The Bangladesh Election Commission (BEC), in partnership with the Bangladesh army, established the Bangladesh 
Voter Registration Project to digitally register all legal voters in the country in advance of general elections in 
December 2008. The biometric registration of voter included collection of fingerprint and facial records. By the 
project’s completion in October 2008, the project resulted in a dataset of 80 million registered voters using face and 
fingerprint technology, creating the world’s currently largest biometric dataset. A portion of enrolled population was 
illiterate and/or had no previous identification documents. The project completion included the following eleven 
stages: Form distribution and data collection, data verification, data entry, data export to server, proof reading and 
editing, verification of proof voter list and handing over, ID card preparation, ID card distribution, correcting 
mistakes on ID cards, preparation of draft voter list and distribution, and data safeguarding and distribution. The 
system includes an integrated large scale AFIS and multiple biometrics face-fingerprint recognition system 
developed jointly by TigerIT Bangladesh Ltd and DohaTech. The resulting ID cards include a barcode encoded with 
ISO fingerprint templates and PKI digital hash printed on each card including name, gender, birth date, picture, 
signature, and fingerprint images.  
 
The national identity dataset of Bangladesh contains the biometric and personal data of more than 80 million people, 
which raises privacy and security concerns. In January 2010, the National Identity Registration Bill 2010 was 
passed, which authorized BEC to become the custodian of this national dataset with power to inquire for any 
individual or institution for personal data. Notably, the law does not provide any clause for protecting the privacy of 
personal information, which enumerates the lack of privacy laws in Bangladesh today.  
 
3.2.3 National ID Card (Thailand) 
 
In April 2005, the Thai government contracted Precise Biometrics for a National ID card solution. Precise's Match-
on-card technology was chosen and integrated by Smart Card System International Co. Ltd. The smart ID cards 
include digital fingerprint information thereby physically tying the card to a specific individual. The matching of the 
fingerprint takes place inside the card, not in the reader. The initial deployment included the supply of 12 million 
cards and 36,000 fingerprint readers, and was expanded in 2006 to include 64 million citizens. As of January 2007, 
10 million ID cards were in use by Thai citizens. In addition to the traditional usage, the ID cards will be used in 
different contexts, such as in education and government ID cards. 
 
The establishment of Thai national identity dataset raises both privacy and security concerns regarding data sharing 
and safeguarding methods. By the project’s completion, Thailand’s national ID dataset will grow in similar scale to 
the dataset of Bangladesh. In addition to the fingerprint information, the dataset ties the biometric information with 
the individual’s other personal data such as the Population Identification Code, a 13-digit string of numbers assigned 
at birth or upon receiving the citizenship. With the increased adoption of biometric technology in national ID and 
biometric passport applications across the globe, the need for adoption of standardized of data security and exchange 
methods has become a pressing concern.  
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3.3 Biometric Data Safeguarding Deployments by Application: Criminal ID 
 
Criminal ID is the use of biometric technologies to identify or verify the identity of a suspect, detainee, or individual 
in a law enforcement application. Criminal ID systems often include a large-scale biometric dataset. Typical 
criminal ID applications include executing fingerprint searches against local, state and national datasets as well as 
processing face images in the form of mug shots against datasets. AFIS is the dominant biometric technology in this 
space, followed by face recognition and fingerprint.  
 
3.3.1 Multilingual Automated Registration System (MARS) (United States) 
 
 The Multilingual Automated Registration System (MARS) provides similar capabilities as that of the Biometrics 
Automated Toolset (BAT) with the addition of flexible multilingual user interfaces; the added user interface with 
additional languages is intended to aid in the transition process as U.S. forces implement the application locally to 

Iraqi officials and military. As a user identification 
application, MARS provides fingerprint, face, and iris 
enrollment and identification capabilities along with digital 
entry of data and related identity information. The 
application is also designed to be compliant with FBI and 
Department of Defence (DoD) biometric enrollment 
criteria to better ensure interoperability of biometric data.  
 
As illustrated in Figure 8, a number of biometric capture 
devices are attached to a single laptop to allow operators to 
capture multiple biometrics from detainees. A COTS 
digital camera is utilized to capture multiple headshots and 
face shots from each detainee for face recognition; typical 

face captures include front image, left and right side 90 degree side profile, and left and ride 45 degree side profile. 
In addition, the system collects the individual’s fingerprint, thumbprint, and iris images. 
 
One of the first deployments of the MARS registration system was established in March 2009 at the Rusafa Prison, 
Baghdad and operated independently by Iraqi officials. The solution included a complete end-to-end architecture 
that allowed for multimodal biometric identification and enrollment of detainees. At the designated prison facility, 
the solution was able to enroll a population of over 25,000 detainees even when operating continuously over an 
extended period of time.  
 
The solution was also designed to access external, centralized datasets to obtain real-time information about 
detainees and facilities. MARS creates Electronic Biometric Transmission Specification (EBTS) files to be shared 
with the DoD authoritative biometric repository, the DoD Automated Biometric Identification System (ABIS). 
These files can subsequently be shared through the DoD ABIS with interagency partner systems such as the Federal 
Bureau of Investigation (FBI) Integrated Automated Fingerprint Identification System (IAFIS) enabling effective 
global identity management. In addition, the system features the capability to create Biometric Data files (BDF) for 
storage and exchange of biometric and demographic data. The file permits creation of digital dossiers within the 
enterprise linking identities and situational information. MARS features a scalable client-server architecture from 
which the Detention Management System (DMS), a web-based detention and prison management system, exchanges 
information. MARS serves as the enrollment point for detainees and manages their detained status, while DMS 
connects to MARS or BAT to update its knowledge of persons in the system. The system provides real-time data 
exchange about detainees and facilities is available for management purposes from one central location using DMS 
Portal, a web-based portal providing detention and prison oversight capability.  
 

 
Figure 8: MARS Work Station at the Rusafa Prison
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3.4 Biometric Data Safeguarding Deployments by Applications: Surveillance 
 
Surveillance is the use of biometric technologies to identify individuals present in a given space or area. Biometrics 
is used to complement or replace authentication methods such as manual monitoring of cameras. Surveillance 
applications scan crowds and open spaces, capturing faces in a field of view from a variety of angles without the 
end-user knowingly interacting with a camera. Surveillance applications are classified by covert operations and its 
real-time 1:N functionality. Face recognition is the only technology used in surveillance due to its ability to acquire 
non-cooperative subjects from a distance and the existence of facial watchlist datasets. 
 
3.4.1 New Delhi Railway Station Face Recognition Surveillance (India) 
 
In January 2005, the New Delhi Police initiated a facial recognition surveillance pilot program at the New Delhi 
Railway Station (see Figure 9). The system, similar to those deployed in Dubai and Singapore, includes cameras and 
searchlights installed at the entry and exit points of the station. The system processes each person as they enter and 
exit the station and runs the picture against a criminal dataset of most-wanted criminals. If a matching record is 
found, the cameras begin recording.  
 
The facial recognition system is connected to a control 
room set up at the station where two computers—the 
recorder and server—will process the pictures for a 
scan against the watchlist dataset in the server. The 
server is equipped with software containing the 
photographs of most-wanted criminals and it flashes a 
signal if the system finds a match in the records. The 
surveillance system can analyze 20 photographs 
simultaneously. The frequency of synchronization 
with the national criminal dataset is unknown. The 
system has been installed to increase traveler security 
and to also reduce surveillance camera film costs, as 
the cameras only begin recording when there is an 
observed threat. 
 
3.4.2 Community Protection Face Recognition System (United Arab Emirates) 
 
Community Protection Face Recognition System is a part of United Arab Emirates (UAE) Ministry of Interior's 
Community Protection initiative, which aims to implement a comprehensive national critical infrastructure 
protection system. One part of that system that is currently in place is a biometric watchlist based on iris recognition, 
called the Iris Expellee Tracking System (IETS) used to prevent illegal entry at UAE ports and to recognize wanted 
criminals. The face recognition system complements the more narrowly focused iris system to perform identification 
checks of entrance and people in transit lounges. The system features real-time facial capture and enhancement 
technology and automated identity searches upon matching against criminal records. Its advanced detection 
technology instantly locates key facial characteristics during enrollment process for immediate analysis. Plans are in 
place for the system to be integrated into the passport control system of the Dubai Naturalization and Residency 
Department.  
 
The underlying biometric technology selected for the face recognition system is to be provided by CryptoMetrics, 
Inc., a global biometric technology vendor. CryptoMetrics and the Ministry of Interior have entered into a 25-year 
exclusive partnership, along with BioDentity Systems LLC, to deploy face recognition systems in UAE. Face 
recognition enrollment images will be in compliance with standards of the International Civil Aviation Organization 
(ICAO). The system has been deployed at Abu Dhabi International Airport since July 2008. As of November 2008, 
four units were soon to be introduced at Dubai International Airport. Two more are planned for the exterior of the 
airport in Dubai, and there are plans to expand the system to all UAE ports of entry, including the Fujairah and Ras 
al-Khaimah airports. The plan is to have four face recognition sites at important ports of entry.  
 
The system allows critical identification checks to be performed from a distance without a person’s active 
participation. The system also helps inspectors at control points inside the airports to facilitate the clearance of 

 
Figure 9: New Delhi Railway Station 
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persons without inconvenience or delay to the passengers while implementing continuous and proactive checks 
designed to immediately detect persons who should be denied entry or detained. 

3.5 Data Safeguarding in Canadian Security Deployments  
  
New biometric technologies and its associated data safeguarding capabilities must consider existing programs and 
data sharing and safeguarding protocols currently in place. This section provides an overview of current Canadian 
biometric deployments in security applications and assesses the effectiveness of information exchange and biometric 
dataset safeguarding practices in existing applications.  
 
3.5.1 CANPASS 
 
CANPASS (Canadian Passenger Accelerated Service System) is a joint initiative of the Canada Border Services 
Agency (CBSA) and Citizenship and Immigration Canada (CIC) designed to streamline customs and immigration 
clearance into Canada for pre-approved, low-risk frequent travelers. The program was initiated in November 2004 to 
serve airline passengers, but has since expanded to include both air and marine travel. Pre-approved travelers with 
CANPASS provide their iris images to confirm their identities against an issued identification card used at self-

service kiosks located within international 
airports (see Figure 10). Participating Canadian 
airports include the Calgary International Airport, 
Edmonton International Airport, Halifax 
International Airport and the Vancouver 
International Airport. The CANPASS program 
consists of a variety of iterations customized for 
specialized border crossing scenarios, including 
via corporate aircraft, private aircraft, private 
boats, and in remote areas. There are currently 
almost 4,800 approved CANPASS travelers. 
 
Once an applicant has completed and signed the 
CANPASS application form, the CBSA is 
authorized to collect personal information such as 
name, date of birth, address, citizenship, proof of 

citizenship and residency information.  
 
The information will be used for background security checks and is not shared with a third party. All information is 
stored in a secure central dataset, which in turn is protected by various methods, including firewalls. Access to client 
information by employees is also controlled and monitored. 
All personal information provided is protected under the federal Privacy Act of Canada. 
 
3.5.2 NEXUS 
 
NEXUS is a joint program between the U.S. Customs and Border Protection (CBP) and Canada Border Services 
Agency (CBSA), which facilitates the simplified security processing for pre-approved travelers. The program was 
originally established in 2002 as part of the Shared Border Accord between the United States and Canada, and has 
since expanded to include the management of travel lanes at airports, waterways, and land crossings. NEXUS 
biometric data consists of digital fingerprints, iris scan, and a facial photograph.  
 
Additionally, membership with NEXUS fulfills the travel document requirements of the Western Hemisphere Travel 
Initiative (WHTI) that requires all U.S. and Canadian citizens to hold a government issued passport or other secure 
travel document when seeking entry or re-entry into the U.S. by air. There are currently 383,000 approved travelers 
in the NEXUS program, which has been implemented at 16 border crossing locations, 33 marine locations in the 
Great Lakes and Seattle, Washington regions, and eight international airports in Canada, including Vancouver 
International Airport, Toronto Pearson International Airport, and Calgary International Airport. NEXUS self-service 
kiosks employ iris recognition technology to quickly screen travelers, allowing them to bypass customs and 
immigration lines. Enrollment in the program consists of a basic background check, fingerprint capture, and iris 

 
Figure 10: CANPASS trusted traveler program 
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capture. Membership lasts for 5 years. As of January 2011, all NEXUS members can utilize Global Entry Kiosks at 
participating airports. 
 
Applicants are screened for citizenship and immigration status, checked for criminal history and positive matches on 
U.S. Federal Bureau of Investigation (FBI), Canadian Security Intelligence Service (CSIS), Royal Canadian 
Mounted Police (RCMP), United Nations, and Interpol terrorism and no-fly list datasets and United Kingdom Police 
National Computer. The information provided by each applicant, including supporting documentation and biometric 
data, is collected under the Customs Act and is protected under the Privacy Act. The information will be used to 
make a determination of your application and the operation of the programs, and are shared with other government 
agencies in Canada and the United States of America. Finally, the information will be retained in the Personal 
Information Bank #CBSA PPU 031, which could be obtained by participants of the program.  
 
Since the NEXUS air and land programs were merged in 2007, interest in the CANPASS program has declined, 
since NEXUS provides a broader range of services at the same price, including both expedited Canadian and U.S. 
immigration at Canadian airports. The most likely reason an individual would be inclined to use CANPASS rather 
than NEXUS is because he or she is deemed ineligible for NEXUS by the United States.  
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4 Biometric Privacy-Enhancing Techniques  
 

4.1 Introduction 
 
Experts in biometrics and information security widely recognize the danger of processing, transmitting, and storing 
biometric information in the clear. Biometric templates are sensitive representations of their owners, and the theft or 
misuse of them can incur serious injury. International standards on the secure management of templates have 
matured insofar as how they are stored and transmitted. Match-on-card technologies and other client-side matching 
devices have taken to the market recently, illustrating the progress of biometric data safeguarding technologies. 
Ironically, there remains to be a definitive agreement on how to store biometric templates in a format that secures 
their owners from identity theft in the event that the templates are stolen.  
 
Biometric template protection methods are processes by which biometric templates are transformed into 
pseudonymous identifiers of their owners. Reliable pseudonymous identifiers are secure and robust, preserving the 
anonymity of their owners while reliably distinguishing them from other individuals. Such processes represent a 
mere step in the flowcharts most security protocols, but arguably they uphold privacy in biometric systems at a most 
fundamental level. Thus biometric template protection methods are continuing to mature in a rigorous academic 
debate as they have been for about a decade. Commercial and governmental organizations have not yet widely 
adopted template protection methods in their existing biometric products or systems; however a handful is investing 
in the research and development of such methods. 
 
This report describes many template protection methods that have matured in the academic discourse. These 
methods are not mutually exclusive, but for organizational purposes they are divided into loose categories. Each 
overarching method is introduced with an overview that covers its general methodology, known vulnerabilities and 
defence strategies, and typical performance rates. Security vulnerabilities are analyzed insofar as they pertain to the 
privacy of the user, whereby the inversion of a protected template would compromise the confidentiality of the 
user’s identity. Commercial developments in template protection are reviewed separately from those in academia. 
The bibliography lists references for every article and patent reviewed in this report and lists other relevant articles 
not necessarily reviewed or referenced in the report, such as attack strategies on well known template protection 
methods. Appended to the report is a summary of the test results for every empirical study reviewed. 
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4.2 Summary of Approaches  
 
Figure 11 summarizes the approaches examined for this Study.  
 

Article Method Notes 

Al-Assam et al. (2009) Projection Reduced the projection method to two steps, eliminating the need for the 
commonly used Gram-Schmitd algorithm. 

Álvarez et al. (2009) Fuzzy Produced vault sets that were resistant to cross-matching by salting the 
minutiae point coordinates with a secret key. 

Ang et al. (2009) Transform Produced cancelable biometrics by using a revocable key in the 
transform function. 

Ballard et al. (2008) Multifactor User password and random oracles influenced the generation of keys to 
improve entropy, regardless of modality.  

Barbosa et al. (2008) Homomorphic Salted keys with random oracles to improve entropy. 

Barni et al. (2010) Homomorphic Borrowed elements of Paillier and ElGamal cryptosystems using 
elliptical curves to save bandwidth during encryption. 

Boult et al. (2007) Transform Divided input biometric into stable and unstable bits, encoding the 
stable and preserving the unstable to aid authentication. Minimized 
tradeoff between security and performance. 

Chen and Chandran (2007) Transform Applied an iterative, bispectral transform and Reed-Solomon error 
correction codes. 

Chen et al. (2009) Parametric Generated keys from statistical measurements of input behavior. 

Chikkerur et al. (2008) Projection Generated signatures from local image patches around minutiae points 
rather than their coordinates. Required no alignment of the minutiae. 

Clancy et al. (2003) Fuzzy First biometric implementation of fuzzy cryptosystem. 

Costanzo (2004) Parametric Generated cryptographic keys from the aggregation of parameterized 
measurements. Original biometric data not used to produce the keys. 

Freire-Santos et al. (2006) Fuzzy Introduced automatic alignment of fingerprint images. 

Hao et al. (2002) Parametric Developed a PKI system that produced keys from encrypted biometric 
templates. 

Hao et al. (2006) Multifactor Produced nearly error-free codes by preprocessing biometric data with 
Reed-Solomon and Hadamard codes. 

Hirata and Takahashi (2009) Transform Applied minimum average correlation energy filters to produce 
templates that were comparable in the encrypted domain. 0% EER 
reported. 

Huang et al. (2011) Homomorphic Server gains no knowledge of the raw input data. Among the most 
computationally efficient methods. 

Jin et al. (2009) Aggregation Generated bit strings from the angle and occurrences of minutiae within 
random triangles. 

Kanade et al. (2010) Multifactor Improved entropy by preprocessing biometric data with Reed-Solomon 
and Hadamard codes and salting key with password. 

Linnartz and Tuyls (2003) Fuzzy Introduced delta-contracting and epsilon-revealing functions to produce 
anonymized representations of the original biometric. 

Maiorana et al. (2008) Transform Used hidden Markov models to compare templates in the encrypted 
domain. 

Merkle et al. (2010) Fuzzy Exponentially improved the entropy of vault sets by superimposing data 
from multiple fingerprints. 

Monrose et al. (2001a) Multifactor Authentication based on password and keystroke behavior. Decision 
made in a single input. Adapted to changes in behavior over time. 

Monrose et al. (2001b) Multifactor Authentication based on password and voice measurements. Decision 
made in a single input. Adapted to changes in behavior over time. 

Nagar et al. (2009) Fuzzy Improved entropy and matching performance by including minutiae 
descriptors in the vault sets. 

Nagar et al. (2010) Aggregation Extended the method of Sutcu et al. (2008) to include fingerprint ridges. 
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Article Method Notes 

Nandakumar et al. (2007) Fuzzy Produced cancelable vaults by salting them with user-supplied 
passwords. 

Nandakumar and Jain (2008) Fuzzy Produced multimodal vault sets to exponentially improve the entropy of 
vault sets. 

Ŏrencik et al. (2008) Fuzzy Developed an algorithm that arranged chaff points in a more realistic 
manner than uniform randomness. 

Ouda et al. (2010) Projection Randomly mapped consistent bits of biometric data to encode 
cryptographic keys. Keys could be cancelled by changing the value of 
the random seed. 

Rane et al. (2009) Homomorphic Extend the method by Sutcu et al. (2008), applying Slepian-Wolf 
syndromes and LDPC codes on irises and fingerprints. 

Scheirer and Boult (2008) Transform Generated tokens that can be re-encoded to form hierarchies of trust, in 
the same way certificate authorities issue digital certificates. 

Scheirer and Boult (2009) Transform Only reliable bits stored in the vault set. Allegedly resistant to rotations 
and translations among inputs. 

Shi et al. (2008) Transform Plotted minutiae points on a polar coordinate system, centered on a 
region of interest. 

Soutar et al. (1999) Transform Transformed fingerprint images rather than features. Produced keys 
usable in AES. 

Sutcu et al. (2007) Fuzzy Improved matching performance by quantizing the input and mapping 
the coefficients to discrete domains prior to constructing the vault set. 

Sutcu et al. (2008) Aggregation Generated bit strings from the occurrences of minutiae within random 
cuboids. Implemented Slepian-Wolf syndrome codes. 

Takahashi and Hirata (2009) Transform Developed an image chip matching algorithm that uses correlation 
invariant random filters. 

Teoh et al. (2007) Projection Applied multispace random projections to the method by Teoh et al. 
(2004), preserving security in stolen-token scenarios. 

Teoh et al. (2004) Multifactor Minutiae coordinates and tokenized random number influenced 
cryptographic key generation. 0% EER reported. 

Uludag and Jain (2006) Fuzzy Appended a checksum to the vault set, eliminating the practical need for 
error correction codes. 

Van der Veen et al. (2006) Fuzzy Optimized the fuzzy vault scheme for use by machine readable travel 
documents. 

Vielhauer et al. (2002) Parametric Generated cryptographic keys from parameterized measurements of 
biometric inputs. No original samples saved. 

Yang et al. (2010) Projection Revised method by Teoh et al. (2007) to support dynamic and nonlinear 
projections, improving resistance to reverse engineering. 

Ye et al. (2009) Homomorphic Implemented k-anonymity to prevent the server from directly examining 
the input biometric. 

Zheng et al. (2006) Fuzzy Introduced lattice mapping as an alternative means for constructing 
vault sets. 

Figure 11: Summary of Biometric PETs Evaluated in this Study 
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4.3 Fuzzy Cryptosystems 
 
A “sketch” or “vault” is a secured template whose development can be traced to the “fuzzy vault” scheme proposed 
by Juels and Sudan (2002). The scheme was designed to encrypt data such that it could be unlocked by similar but 
inexact matches. Variants of the fuzzy vault scheme are referred to more generally as fuzzy cryptosystems. The 
method lent itself well to the protection of biometric templates, where inputs are inconsistent due to lighting, 
rotation, etc. The mechanism for obfuscating data in fuzzy cryptosystems is to insert random noise that resembles 
genuine minutiae points or other features. In doing so an attacker cannot easily differentiate genuine features and 
false features. Most variations of this system follow key release protocols, though some generate keys from the 
biometric data. The key generation variant was pioneered by Dodis et al. (2008) and is often referred to as a “fuzzy 
extractor.” Fuzzy cryptosystems are perhaps the most practiced and debated template protection methods in 
academia. As a result there is a wealth of literature on the security vulnerabilities and countermeasures to mitigate 
these vulnerabilities, making this method among the most mature of all template protection methods despite its 
many shortcomings. 
 
Given its inherent weakness to collusion attacks, fuzzy cryptosystems should be employed only in an environment 
where access to the template storage device is reliably secure. Furthermore they are better suited for applications 
that enroll multimodal biometrics. This ensures that the vault set retains a high level of entropy to resist brute force 
attacks. Applications endowed with greater computing power should consider alternative template protection 
methods that offer a greater level of security at the expense of computational efficiency. To the extent possible given 
practical constraints, a fuzzy cryptosystem should make use of the strategies proposed by Poon and Miri (2009) and 
Mihãilescu (2007) to harden the vault set against collusions attacks and brute force attacks. 
 
4.3.1 Method 
 
Three steps generally constitute the protocol for fuzzy cryptosystems: 
 
 Feature extraction 
 
Biometric feature data are recorded onto a set that represents the original or “genuine” biometric features. This is 
referred to as the genuine set. Among the articles reviewed, the most widely adopted structure for this set consisted 
of the coordinates and angles mi=(x,y,θ) of fingerprint minutiae. The ordinate values of the minutiae points are 
encrypted by a secret polynomial p.13 A genuine set G of n minutia points mn is expressed verbosely as 
 

G=(m1,m2,…mn )=((x1,p(y1),θ1 ),(x2,p(y2),θ2 ),…,(xn,p(yn),θn )) 
 
 Noise generation 
 
Random data is recorded onto a set that represents counterfeit biometric features. This is referred to as the “chaff” 
set. The chaff set serves as a decoy, such that anyone reading the template could not easily distinguish genuine 
points from chaff points. To be effective, it must be structured in the same fashion as the genuine set but should 
contain many more points to augment the entropy of the vault set. The number of chaff points that can be generated 
without ruining verification performance is limited by the size of the image. A chaff set C of i chaff points cn is 
expressed verbosely as 
 

C=(ci,ci,…cn )=((x1,p(y1),è1 ),(x2,p(y2),è2 ),…,(xi,p(yi),èi )) 
 
 Point Shuffling 
 
The genuine and chaff sets are combined and shuffled by a function  to create a secure set, referred to in the 
literature as a vault or sketch. A vault set V of n + i points vn+i is expressed verbosely as 
 

                                                 
13 In a coordinate pair (x,y), y represents the ordinate. 
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V=(v1,v2,…vn+i )=S(G C)=S((g1,g2,…gn ),(c1,c2,…ci )) 

 
The system must decode the sketch before it can match the data against inputs. First it must distinguish the genuine 
data from the random noise. It achieves this through polynomial reconstruction, which typically requires the use of 
error correction codes and “helper data.” Typically the similarity between an input and a stored template is scored by 
measuring their Hamming distance. 
 
4.3.2 Vulnerabilities14 
 
Collusion Attacks 
 
Early fuzzy cryptosystems were not inherently revocable. An attacker could compare the abscissa values15 between 
two vaults generated from the same fingerprint to identify the genuine points in both vault sets. If an attacker is 
capable of breaching one dataset and stealing data, it should be assumed that the attacker can breach other datasets. 
An attacker that obtains vault sets from multiple datasets can identify which points are genuine by comparing the 
sets against those in other datasets. While the chaff points will be different for two vault sets from the same user, the 
abscissa values of the genuine points will always be the same; thus the genuine points are suggested by their 
consistency among vault sets across multiple datasets. 
 
Poon and Miri (2009) designed algorithms for executing collusion attacks on fuzzy cryptosystems, which assumes 
that an attacker has access to multiple vaults locked by the same fingerprint stored on multiple datasets or smart 
cards. The attack involves the comparison of points across multiple vault sets and singles out the points which 
appear in more than one vault. By a process of elimination, the size of the vaults can be reduced until the remaining 
points are deemed genuine with a high degree of confidence. The researchers proposed several strategies for 
mitigating the risk of collusion attacks, one of which was to apply a one-way transform to the vault set. 
 
Nandakumar et al. (2007) proposed a variation of the fuzzy cryptosystem that mitigated collusion attacks by using 
multifactor authentication, using a password or token to alter the key generation process. 
Brute Force Attacks 
 
The application of a fuzzy cryptosystem on a fingerprint image typically produces low entropy vault sets. This 
makes the templates susceptible to brute force attacks and incompatible for use as cryptographic keys in common 
security protocols like AES, which require a minimum key length of 128 bits. Mihãilescu (2007) analyzed the ability 
of fuzzy cryptosystems to resist brute force attacks. While the seemingly obvious solution would be to generate 
more chaff points, the researcher noted that the number of chaff points that can be generated is limited both by the 
size of the image and by the variance of the genuine minutiae points. The researcher proposed several strategies for 
mitigating the risk of brute force attacks: (1) enroll multiple fingerprint images to augment the entropy of the vault 
set exponentially; (2) generate a non-random distribution of chaff points by laying a hexagonal grid on the 
fingerprint template, such that each grid point is associated with a point, be it chaff or genuine.16 
 
The means of maintaining data integrity some variations of the fuzzy cryptosystem opened the door to brute force 
attacks. Uludag and Jain (2006) and Nandakumar and Jain (2008) appended a checksum to the vault set which 
allowed the server to determine if a match was successful more efficiently. Mihãilescu (2007) observed that while 
this method enhanced system performance, it would allow an attacker to understand in real time when an attempted 
brute force attack succeeds. To use checksums therefore facilitates the execution of offline brute force attacks. 

                                                 
14 Researchers have also identified another vulnerability whereby an attacker can substitute some of the chaff points 
in the vault set with his or her own genuine points, thus enabling the system to recognize the attacker as legitimate. 
While this is concerns the security of the method, it does not concern the privacy of the user and therefore falls 
outside the scope of this report. 
15 In a coordinate pair (x,y), x represents the abscissa value. 
16 See Mihãilescu (2007): 7-8. 
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Nandakumar and Jain (2008) and Merkle et al. (2010) proposed the enrollment of multiple fingerprints and 
multimodal biometrics to exponentially increase the size of the vault set. The multiple fingerprint vault set, which 
performed better than the multimodal vault set in a test by Nandakumar and Jain (2008), achieved a size of 224 bits 
where the error rates were lowest. Unfortunately the solutions proposed in both publications would be unacceptable 
in most existing fingerprint applications, which were designed to enroll and match a single fingerprint image. 
 
Information Leakage 
 
Most fuzzy cryptosystems store public auxiliary information, referred to in the literature as “helper data,” to reduce 
intraclass variance, thereby enhancing the verification performance of the system. Helper data derives from the 
original biometric input. Uludag and Jain (2006), for example, used the maximum curvature points and the 
corresponding curvature values from the orientation flow curves of the minutiae. The caveat is that the helper data 
leaks trace amounts of information on the original biometric, making it easier to reverse engineer the original 
biometric from the vault set. Most researchers claimed that the amount of information leaked is trivial, but the 
security risk should be assessed nonetheless. 
 
4.3.3 Performance 
 
Empirical tests on the performance of fuzzy cryptosystems have produced mixed results. Researchers have applied 
the method to face, iris, fingerprint, signature, ear, and multimodal biometrics. None of the key binding variations 
met the performance target of 1% FRR at 0.1% FAR, and only one key generating variation met the target. Van der 
Veen et al. (2006), whose method was eventually developed into an algorithm now sold in products by priv-ID, 
achieved the best results using a key binding variation against face images at 0.25% EER. An implementation of the 
method by Linnartz and Tuyls (2003) yielded the best results using a key generating method against ear biometrics 
at 0.6% FRR at 0.05% FAR, which meets the performance target. Ironically, as researchers invested so much time in 
the development of fuzzy cryptosystem for fingerprints, the method has yet to produce acceptable performance rates 
for that modality.  
 
4.3.4 Articles 
  
Clancy et al. (2003) 
 
At the time of this publication, smartcards had become a common technology and concerns grew over the security of 
private keys stored in the cards. Clancy et al. proposed a framework for a smartcard system in which the private key 
was encrypted and decrypted by an authorized fingerprint. The proposed method was the first variation of the fuzzy 
vault scheme by Juels and Sudan (2002). Referred to by the researchers as a “fingerprint vault,” the proposed 
method used the coordinates of fingerprint minutiae to encrypt and decrypt the private key. 
 
Method 
 
For each transaction the user presents a fingerprint image from which a vector of features are extracted. For the 
purpose of this paper, the researchers treated the extraction and alignment of features as a black box. The minutiae 
coordinates mi=(xi,yi) form the basis of the key used to lock the vault. To handle intraclass variations, a matrix of 

likely minutiae locations (x i,y i) from a given minutiae set is constructed using an additive Gaussian noise model. 

Chaff points are added to obfuscate the fingerprint data. To prevent quantization errors, the chaff points must not be 
placed too close to the genuine points or to themselves. The researchers use a circle packing algorithm to generate as 
many chaff points as possible within the limited space while maintaining sufficient randomness. 
  
During enrollment, the user presents N fingerprint images resulting in N minutiae sets, b1,b2…bN. To derive the 
locking set L, let A be the set of average points with multiplicity. For each minutiae mi in each set bn elements are 
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selected from nk  A where |nk-mk|<T. If no matches are found, mj is added to A with a multiplicity of one; 

otherwise mi is added to the average and the multiplicity is increased such that A={a  A: multiplicity(a)>S}. Figure 

12 illustrates how the reliable minutiae point regions are determined after several training enrollments.  
 
During authentication, the user presents a single fingerprint image from which a minutiae set U is derived. For each 
point in the set, the system finds the closest point in the vault set. They used the Berlekamp-Massey algorithm, a 
variation of Reed-Solomon decoding, to unlock the vault. The secret polynomial can be reconstructed if at least 
(ä+n)/2 points in the query set match a genuine point in the vault set, where ä represents the radius of the reliable 
minutiae regions. 
 
 

 
Figure 12: Example of reliable minutiae regions  after five fingerprint scans 
 
Performance 
 
The researchers tested the proposed method against fingerprint images. They achieved ~30% FRR at ~0% FAR, 
which is unacceptable in many applications. False match rates and false non-match rates rose as the polynomial 
degree and number of chaff points rose. Uludag et al. (2004) noted that this method required fingerprint images to be 
pre-aligned in order to perform well and that it was not tested in a sufficiently realistic environment.17 Therefore the 
method required significant tuning, as would happen in the development of the fuzzy cryptosystem. 
 
Linnartz and Tuyls (2003) 
 
Linnartz and Tuyls were concerned with the unauthorized collection and misuse of biometric templates, which at the 
time were often stored in the clear. They attempted to obfuscate templates as a means to safeguarding the privacy of 
their owners. The proposed method used transform functions to irreversibly anonymize biometric information. Their 
study was the first to concern itself not just with the ability to produce cryptographic keys from biometric data but to 

                                                 
17 Umut Uludag et al., “Biometric Cryptosystems: Issues and Challenges,” Proceedings of the IEEE 92 (2004): 956. 

.
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safeguard the privacy of biometric data. The theory behind the methodology was foundational to the work of Dodis 
et al. (2008). 
 
Method 
 
At a high level, a feature measurement Y is extracted from the biometric image that a user presents upon enrollment. 
A signal processing function G=(W,Y) quantizes the supplied information to reduce noise. The refined data 
Z=G(W,Y) is then obfuscated by a hash function F to produce a secure, noninvertible template U=F(Z). The signal 
processing function G is applied to the input data to ensure that the input values are mapped to the same values as 
those in the stored template. 
 
For the ith dimension (1,2,…i,…,n1,n1=n2) of Y, W, and Z the δ-contracting function is expressed as 
 

 
 
where q is the quantization step size and w is the watermark of quantization index modulation.18 During enrollment, 
xi is measured and the certifying authority finds a wi such that the value of yi + wi is pushed to the nearest lattice 
point where xi+wi + ä is quantized to the same zi for any small ä .The watermark w is expressed as 
 

 
 

where n= ,-1,0,1… is chosen such that –q < wi < q. The value of n is discarded while the values of w are used as 

helper data in subsequent transactions. 
 
Performance 
 
The researchers discussed the theory behind the proposed method in theory but did not test empirically. But it was 
implemented in a subsequent study by Tuyls et al. (2004), who tested the proposed method against 360 ear images 
from 45 unique individuals. They achieved 0.6% FRR at 0.5% FAR where mean key length l = 370 and ä=2.0. 
These are the best results achieved by a fuzzy cryptosystem among those review in this report. They observed that 
FRR falls as either ä or key size l rises, and the key length l falls as ä rises. 
 
Van der Veen et al. (2006) 
 
Van der Veen et al. proposed a variation of the fuzzy vault scheme by Juels and Sudan (2002) intended for use in 
machine readable travel documents. The proposed method was one of the few fuzzy cryptosystems to be applied to a 
modality other than fingerprints, yet it was among the best performing variants reviewed in this report. Van der 
Veen is now the CEO of priv-ID, a leading provider in privacy enhancing technologies for biometrics, and the other 
researchers in the report have filed multiple applications for patents on biometric template protection. 
 
Method 
 

                                                 
18 The researchers cite B. Chen and G.W. Wornell, 1998, “Digital Watermarking and Information Embedding Using 
Dither Modulation,” in IEEE Workshop on Multimedia Signal Processing 47(4): 1423-1443. 
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During enrollment, the user presents a face image and fiduciary features are extracted from the image in the form of 
a vector X.19 The feature vector is immediately converted into a codeword vector C using from an error correction 
code. The vector is mapped onto a random vector to be used as helper data during authentication. The helper data 

signal W is defined as the difference between the codeword 
vector and the feature vector, such that W x=C x-X. Figure 13 
illustrates the algorithm during enrollment and authentication 
of the proposed helper data algorithm developed in a prior 
publication. During authentication the correct point is selected 
within a given radius ä. 
 
Then the vector is quantized into a binary feature vector Qi 
such that for each user i 
 

 
 

Where ì  is the mean of the enrollment feature vector, t is the component number, and (ì t) is the mean of the 

intraclass variability. Citing the unreliability of Qi the researchers selected only the most reliable components from 
each vector resulting in Zi. The vector is then ready to be protected. To achieve this they employed an error 
correction code with parameters (K,s,d) where K is the length of the codeword, s is the number of information 

symbols, and d is the number of errors that can be corrected. First, a random binary sequence SiD  {0,1}s is 

generated and encoded into a codeword Ci. Then the second helper data signal W2 is determined where 
 

W2i = Ci  Zi 

 
The data (ì,W1iD,W2iD,h(SiD)) is saved to a storage device and will be referenced during authentication, where h(SiD) 
is the hash value of the binary sequence SiD. When the user attempts to authenticate, a vector of reliable features is 
extracted from the query face image. Template information (ì,W1iD,W2iD,h(SiD)) is pulled from the storage device. 
Both ì and W1iD are used to derive the binary feature vector Z'iD which is necessary for determining the codeword 
C'iD such that 
 

 
 
Decoding C'iD leads to the recovery of the secret S'iD and its hash value h(SiD). Authentication is successful if this 
hash value matches that stored in the system. 
 
Performance 
 
The researchers tested the proposed method against one dataset with 237 faces and another with 96 faces. 
Respectively they achieved 35% FRR at 0% FAR meeting at 1.5% EER; and 3.5% FRR at 0% FAR meeting at 
0.25% EER. The images that yielded more accurate results had smaller dimensions, fewer fiducial points, a smaller 

                                                 
19 The researchers consider six such features in this publication: left and right eye, left and right eyebrow, mouth, and 
nose. 

 
Figure 13: Enrollment (a) and authentication (b) 
procedures in the proposed helper data algorithm 
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feature vector size, and less interclass variability. The security of the method might appear dubious compared to 
others because multiple data (ì,W1iD,W2iD,h(SiD)) are saved to the storage device. The researchers claimed that an 
attacker cannot retrieve a reliable feature vector Zi even with knowledge of the helper data signal W2i and hashed 
secret h(Si). 
 
Zheng et al. (2006) 
 
Zheng et al. proposed a method for producing highly entropic, noninvertible keys from iris images. They extended 
the fuzzy commitment scheme by Juels and Sudan (1999) by using K-nearest neighborhood classification. The 
lattice functions that map the biometric features onto lattice spaces are the only elements stored in the protected 
template. The researchers claimed that the original biometric cannot be recreated from the protected template even if 
the lattice functions are compromised. 
 
Method 
 
For each transaction, the user presents a biometric image from which a feature vector x=(x1,x2…xp) is extracted. The 
system generates an array of random binary strings sp stored as a codeword vector c=(s1,s2…sp). The codeword is 
treated as the coordinate x in the lattice space L(O,ä), where O is its origin and ä is its grid size. The origin O is 
defined as an array O=(o1,o2…oi) where each oi=xi-ä-2äsi. The decoding function f() maps x to c using the lattice 
system L(O,ä). Each codeword element si is mapped onto a vector such that 
 
 

 
 
The system then computes the secret key sk=h(c) or key pair (SK,PK)=K(c) and stores the lattice system L(O,ä). 
During authentication, the user presents a biometric image and attempts to unlock the codeword stored in the 
system. If successful, the codeword is used to compute the secret key or to seed K to derive (SKU,PKU). The 
codewords match where 
 

 
 
Performance 
 
The researchers tested the proposed method against 150 iris images. They achieved ~2% EER where K = 7 and 
~1.5% EER where the grid size ä=0.7, Error rates fell as the number of training samples rose.  
The researchers noted that the security of the protected template depends on the hash function h(c) or the key 
generator K(c). They further note that the release of ä would leak trace amounts of information on the original 
biometric, even though only the lattice functions are stored in the template. The templates can be canceled by 
altering the value of the ä. 
 
Uludag and Jain (2006) 
 
Uludag and Jain proposed a variation of the fuzzy vault scheme by Juels and Sudan (2002) to protect fingerprint 
templates. A security concern in the original scheme was its tendency to leak trace amounts of information on the 
original biometric template, which theoretically could be used to reverse engineer the original template from the 
protected template. The goal of this study was to produce a more robust template protection method in which helper 
data leaks no sensitive information on the original biometric. The proposed method did not include error correction 
codes as the original fuzzy vault scheme did. 
 
Method 
 
During enrollment the user submits a fingerprint image from which a feature vector is extracted. Minutiae data are 
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quantized to account for intraclass variations. Concomitantly, a 128-bit secret string is randomly generated and a 16-
bit cyclic redundancy check (CRC) is generated from the secret string. The CRC is appended to the secret string, 
forming a 144-bit string. This string can be represented as a polynomial p(u) with 9 coefficients with degree d=8 
such that 
 

 
 
The bit string is used to create two sets of point pairs: a set of genuine points from the template and a set of chaff 
points randomly generated in the Galois field GF(216). The genuine set G and chaff set C are defined respectively as 
 

 
and 
 

 
 
where each u is a unique minutiae point in the original template, p(u) is the polynomial of u, N is the number of u; c 
and d are distinct sets of random, unique points, and M is the number of chaff points. Finally the genuine and chaff 

sets are combined as G C and scrambled into the vault set V, such that 

 

 
 
where v and w represent the scrambled points, N represents the number of minutiae templates, and M represents the 
number of chaff points. During authentication a user submits N query minutiae Q={u1*,u2*,…,uN*} in an attempt to 
unlock vault V. Points uN* are compared with the abscissa values in V. Any vault point (vt,wt) that matches that in 
the input is recorded to a set to be verified in the decoding phase. The researchers construct the Lagrange 
interpolation of the polynomial to decode the vault set. From a given vault set v=vN+M,wN+M the corresponding 
polynomial is 
 

 
which when calculated in Galois field GF(216) is expressed as 
 

 
If at least D + 1 query minutiae points match a genuine minutiae point in the vault set, the correct secret S will be 
decoded and the user is authenticated. 
 
Performance 
 
Uludag and Jain tested the proposed method against 800 fingerprint images using automatic alignment. They mixed 
24 genuine minutiae points with 200 chaff points per vault. The results from two trials showed 27.4% FRR and 
15.5% FRR20 respectively at 0% FAR. They claimed that the false rejections were due to errors in helper data or 
poor quality input images. Their implementation of the iterative closest point algorithm aligned input features to 
template features, something that other researchers at the time had neglected to consider. 
 
Freire-Santos et al. (2006) 
 
Freire-Santos et al. proposed a variant of the fuzzy vault scheme by Juels and Sudan (2002). Prior to their research, 
                                                 
20 FRR calculated from reported GAR. 
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template protection methods based on the fuzzy vault scheme required manual prealignment of the input images. 
Freire-Santos attempted to align the input images w2automatically. Their methodology follows that of Uludag and 
Jain (2006). 
 
Method 
 
As shown in Figure 14, during enrollment, the user writes a signature from which a template feature vector T is 
extracted in the form of N 16-bit units. A checksum of S is appended to S. A polynomial p(x) is then constructed 
with degree D=K/16, such that 
 

p(x) = S1x
n +…+ SDx1 + SD+1 

 
Polynomials are projected for all points in the feature vector, forming genuine set G, such that 
 

G={t1,p(t1 ),…,(tN,p(tN))} 
 
A chaff set C with M points is also generated where di≠p(ci) such that 
 

C={c1,d1,…,cM,dM} 
 

The genuine and chaff point sets G C are scrambled into the vault set V such that 

 
V={(v1,w1 ),…(vN+M,wN+M)} 

 
The vault, then, is nothing more than a disordered union of the genuine and chaff point sets. That the two sets are 
arranged in a random fashion makes it nearly impossible to distinguish genuine and chaff points. Only by knowing 
D + 1 or more genuine points can a polynomial be reconstructed to distinguish the genuine points. 
 

 
Figure 14: Encoding process (2006: 3)  
 
During authentication, the user presents a signature from which a template feature vector Q is extracted. To unlock 
the vault, the values of the feature vector from an input image are compared against those in the vault. Specifically if 
any point q1 is present in the abscissa values of the vault set, then the point will be used as a candidate to reconstruct 
the secret polynomial. The secret polynomial is interpolated with all combinations of the point candidates using the 
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Lagrange method, also used by Uludag and Jain (2006). If the division between this new polynomial and the stored 
polynomial is equal to zero, then the secret is valid with an error probability of 2-16; otherwise it is invalid. 
 
In their implementation, Freire-Santos et al. preprocessed handwritten signatures by omitting the first and last 10% 
of the images, normalizing the shapes based on the center of mass and the standard deviations of the function values, 
and smoothing the images to reduce noise-related errors. They constructed their vaults using the maxima and 
minima, in the same fashion that Uludag and Jain (2006) used the coordinates of fingerprint minutiae. 
 
Performance 
 
The researchers tested their method against 16,500 handwritten signatures. After 15,625 imposter comparisons, they 
achieved 57.30% FRR at 1.18% FAR and 0.32% FAR for skilled and random forgeries, respectively. These results 
are far from ideal, but it should be noted that the signature modality typically yields less accurate verification rates 
than fingerprint, iris, or face biometrics. Further testing on more reliable biometric modalities and with error 
correction strategies might yield lower error rates. 
 
Sutcu et al. (2007) 
 
Sutcu et al. critiqued the practical application of existing fuzzy cryptosystems, arguing that a lot of entropy would be 
lost when generating keys from quantized templates. They described a cryptosystem that they developed in a 
previous work21 and applied it to an authentication scheme using face biometrics. The proposed method is similar to 
the fuzzy vault scheme proposed by Juels and Sudan (2002). 
 
Method 
 
During enrollment, the user i presents a biometric image from which a feature vector Vi=[vi1 vi1…vin]

T of size n is 
extracted several times to train the system. Each midpoint v ij and range size δij of the feature vectors is estimated 
from the training set. The global range sizes MNj=mint(mnij ) and MXj=maxt(mxij ) are quantized into a codebook Cj 
such that 
 

 
 
where rj is a random positive number and Lj is an integer that satisfies MNj-rj+Lj δj≥MXj. This allows the data to be 
mapped onto a discrete domain, which was a requirement of the fuzzy vault scheme by Juels and Sudan (2002). 
Then a vault set Pi is derived from the codebook as a vector expressed as 
 

Pi=[pi1 pi2…pik ]
T 

 
where each  is defined as 
 

 
 

and where  is the codeword in  that is closest to . Reconstruction of the original biometric is 
successful if 
 

 
 

                                                 
21 Qiming Li, Yagiz Sutcu and Nasir Memon, 2006, “Secure Sketch for Biometric Templates,” in Lecture Notes in 
Computer Science 4284(2006): 99-113. 
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where the discrete range size dij= δij⁄δj  is the user specific error tolerance bound for the jth component and the 

quantization step δj is defined as δj=α min(δij); α is a parameter between 0 and 1. During authentication, feature 
vectors from an input image are extracted, trained, and quantized in the same fashion as the enrollment process. If 
the dataset matches that of one stored in the dataset, authentication is deemed successful. 
 
Performance 
 
The researchers tested the proposed method against face images. After 1,216 genuine and 183,616 imposter 
authentication attempts, they achieved ~3.8% FRR at ~0.7% FAR where  was a recommended value of 1. Its 
performance can be linked to the proposed quantization method, which is what distinguishes this method from other 
fuzzy cryptosystems. 
 
Nandakumar et al. (2007) 
 
Nandakumar et al. wrote this article in reaction to growing concerns about the security vulnerabilities in the fuzzy 
cryptosystems, namely that the vault sets could not be cancelled and were susceptible to collusion attacks. They 
attempted to produce cancelable vault sets for fingerprints by integrating passwords to the general method of the 
fuzzy cryptosystem. The method is similar to that proposed by Teoh et al. (2004) in that it authenticates a user based 
on who they are and what they have. 
 
Method 
 
During enrollment the user presents a password and a fingerprint image from which a feature vector (x,y,è) is 
extracted, where (x,y) are the minutiae coordinates and è is the angle of each minutiae point. The minutiae points are 
classified according to their location in each quadrant of the image. Then the password is split into four equally 
sized units, 22 which are then distributed evenly among the quadrants. Each password unit is divided into three 
components Tx, Ty, and Tè. Tx and Ty represent the amount by which the minutiae will be translated, and Tè 
represents the degree to which they will be rotated. The new minutiae attributes Q'x, Q'y, , and Q'è, are derived from 
the addition of the translations values and the original values modulo the appropriate range, such that 
 

 
 
Observe that a change in the password would affect the values of Qx', Qy', and Qè'. Thus if the user were to change 
his or her password, the template would be cancelled. Next, the minutiae points are encrypted in the vault set. To 
construct the vault, the researchers use Lagrange interpolation and cyclic redundancy checks instead of the 
conventionally used Reed-Solomon polynomial reconstruction. Each minutiae point, represented as an element in 
the Galois field GF(216), is quantized into binary strings Qx, Qy, and Qè. These minutiae points form a genuine set. A 
large set of chaff points is combined and shuffled with the genuine set to form the vault set. 
 
During authentication, the user presents a password and a query fingerprint image. Minutiae from the query image 
are transformed by the password using the same process as during enrollment. Helper data from the vault set and 
query set are aligned with the transformed query template using a trimmed iterative closest point algorithm.23 This 
singles out many of the chaff points from the vault set, assuming the query fingerprint is indeed the same as the 
enrolled fingerprint. The researchers claimed that the helper data leaks no information on the original biometric, 
which, if valid, poses no significant security threat. 
                                                 
22 The researchers assumed the password length to be 16-bits, or 8 characters, which perfectly aligned with the 
number of minutiae points. How to handle a variable-length password is a major concern for the usability this method. 
23 The researchers cite D. Chetverikov et al., 2002, “The Trimmed Iterative Closest Point Algorithm,” in Proceedings 
of the international Conference on Pattern Recognition: 545-548. 
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Performance 
 
The researchers tested their approach against two datasets with 800 and 640 fingerprint images. Respectively the 
results yielded 10-19% FRR and 19.4-26.2% FFR24 at 0% FAR with 58-70 bits of security including the password. 
FRR increased as the size of the polynomial increased. Additionally, they found the vault sets to be more uniformly 
distributed than the original template, fortifying them against attacks. What this approach gains in security it loses in 
usability. While its results showed that it can reliably protect against unauthorized access, it may reject too many 
genuine users to be considered acceptable. This may have been the only attempt at combining fuzzy cryptosystems 
with multifactor authentication, and the results do not bode well for their interplay. 
 
Nandakumar and Jain (2008) 
 
Nandakumar and Jain applied fuzzy cryptosystems to multimodal templates that combined fingerprint minutiae and 
IrisCodes. The proposed method transformed both feature sets into a common format and fused them into a single 
vault set following the fuzzy vault scheme proposed by Juels and Sudan (2002). The setup of the method mirrored 
that proposed by Nandakumar et al. (2007) in that biometric features were represented in Galois field GF(216), the 
key size was set to 16n bits where n was the degree of polynomial P, and error correction was achieved through 
Lagrange interpolation and CRC instead of Reed-Solomon codes. 
 
Method 
 
For each transaction the user presents a fingerprint and an iris. Features from fingerprint and iris images were 
segmented and converted to a common format. Upon presenting a fingerprint, the coordinates and angles of the 
highest quality minutiae points were extracted, quantized, and concatenated into a 16-bit number. 25 A set of high 
curvature points was also extracted and stored in the vault to aid the alignment of the stored template with the query 
templates. Upon presenting an iris, the IrisCode template is extracted and transformed by a random salt. To perform 

the transform, and IrisCode IT is split into r distinct components . Then r random binary vectors K1…Kr 
are generated. A BCH encoder is applied to each binary vector K1…Kr resulting in the codewords H(K1)…H(Kr). 

The codewords were XORed with the transformed IrisCode components  such that any given component 

. Thus the transformed IrisCode I* can be expressed more simply as 
 

 
 
where F1 is the salting function that transforms the IT based on K1. 
 
Nandakumar and Jain considered the proposed on three applications of multiple biometrics: (1) where the template 
consisted of multiple impressions of the same fingerprint; (2) where the template consisted of multiple fingerprints; 
and (3) where the template consisted of multiple modalities, particularly fingerprint and iris. In the case where 
multiple fingerprint impressions were to be stored as a single template, they used a “mosaicing” technique.26 In the 

case where multiple fingerprints are to be stored, the union of all the minutiae sets  formed the basis 
of the vault. In the case where fingerprint and iris features were to be stored, the vault set was derived from the 
union of all points between the two feature sets where Hamming distance HD ≥ 2. 
 
Performance 
 
The researchers tested the proposed method using multiple fingerprint templates and multimodal templates. The 
experiment on multiple fingerprint templates achieved 10% FRR27 at 0.02% FAR and 2.5% FTCR. The experiment 

                                                 
24 FRR calculated from reported GAR. 
25 The means by which the minutiae points were processed resembled that by Nandakumar et al. (2007). 
26 The mosaicing technique was adapted from A. Ross, S. Shah, and J. Shah, “Image Versus Feature Mosaicing: A 
Case Study in Fingerprints,” in Proceedings of SPIE Conference on Biometric Technology for Human Identification 
(6202), (2006): 1–12. 
27 Calculated from 90% GAR. 
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on fingerprint and iris images achieved 1.8% FRR28 at 0% FAR and 0% FTCR, and it produced a vault key size of 
224 bits. Feasibly the multimodal test could meet the performance target of 1% FRR at 0% FAR with some tuning. 
These results suggest that multimodal authentication is superior to multifactor authentication as a means of 
augmenting security and performance in fuzzy cryptosystems. 
 
Ŏrencik et al. (2008) 
 
Ŏrencik et al. proposed a variation of the fuzzy vault scheme by Juels and Sudan (2002) that was designed to resist 
brute force attacks. The researchers observed that genuine points could be distinguished from chaff points based on 
the distances between them in conventional vault sets. The proposed method entailed a more sophisticated means of 
distributing chaff points and required storage of multiple chaff polynomials, a novel contribution to the fuzzy 
cryptosystem. 
 
Method 
 
The researchers generated chaff points such that each one was at least t Euclidian distance units apart from a genuine 
point and at least t' Euclidian distance units apart from any other chaff point. The threshold t is set according to the 
distribution of the genuine points, but the researchers did not formalize a method for selecting this threshold. Figure 
15 compares the distribution of chaff points in the original fuzzy vault scheme by Juels and Sudan (2002) and the 
proposed method, where t = 18 and t '= 8. The chaff point distribution of the proposed method more closely 
resembles that of the genuine points, such that an attacker cannot easily distinguish the genuine points from chaff 
points. 

 
Figure 15: Chaff point distribution by Juels and Sudan (2002) (L) and Ŏrencik et al. (2008) (R); genuine points darkened (2008: 
40). 
 
To construct the chaff polynomials, first generate a random number r that is close to the number of genuine points n. 
For the first polynomial elect k-1 random points from the vault set and one random point from a pool of random 
chaff points. For the other polynomials select k random points from the vault set, find the polynomial of degree k-1 
that passes through the selected points, and add the polynomial to a list of chaff polynomials. Verify if there are any 
other points in the vault set laying on the polynomial. Decrease r by the number of points in this polynomial. Select r 
points from the pool of chaff points and evaluate them on the chaff polynomial. Place the resulting values in the 
vault set. Repeat this process until pool of chaff points is empty. 
 
Performance 
 
The researchers tested the proposed method against 360 fingerprint images under two attack scenarios: brute force 
attacks and Reed Solomon decoding. They achieved 1.5% FRR at 0% FAR where the vault size was 300, the 
threshold t=18, k=10, n=15 on average, and the minimum distance between chaff points was 8. These are decent 
results compared to other variations of the fuzzy cryptosystem reviewed in this report. They found that it was faster 

                                                 
28 Calculated from 98.2% GAR. 
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to recover the secret polynomial from the vault set using Reed Solomon decoding when the number of chaff points 
was large. The researchers were able to hide 30 chaff polynomials in the vault set using the proposed method. They 
claimed that this decreased the probability of recovering the secret polynomial by brute force from 100% to 3.3%. 
 
Nagar et al. (2009) 
 
Nagar et al. found that empirical tests on fuzzy cryptosystems yielded poorer results than other methods because 
they were optimized to work with limited fingerprint information. The researchers proposed a variation of the 
method that stored minutiae descriptors in the vault sets, providing more detailed information on a fingerprint than 
just the coordinates of its minutiae points including the frequency and orientation of the ridges around each minutiae 
point. The protected template was a nested vault set, in which the abscissa values of the minutiae points were stored 
in one vault set and the ordinate values were stored in a another vault set. 
 
Method 
 
During enrollment a 16-bit cyclic redundancy check code is appended to a 16n-bit key K and divided into (n+1) 
blocks of 16 bits each. The blocks served as the coefficients of a secret polynomial p(x) of degree n represented in 
Galois field GF(216). Minutiae points are selected from the template based on their quality and separation from one 
another, as done by Nandakumar et al. (2007) The coordinates and angles of the quality minutiae points, along with 
a large number of randomly generated chaff points, are stored in the vault set V.  
 
The researchers used minutiae descriptors to encrypt the ordinate values29 of the minutiae points. 30 The ordinate 
value for each minutiae point was used to obtain a codeword C from an error correction code. The design of the 
proposed method requires that the minutiae descriptors be represented in binary format. The binarization process 
consists of four stages: (1) estimating the missing values based on nearest neighbors; (2) reducing the dimensionality 
of the descriptor; (3) encoding Gray codes; and (4) selecting the discriminable bits. The secure ordinate value 

, along with the abscissa values, are stored in the dataset as helper data. Descriptors for the chaff 
points are randomly chosen from the set of all descriptors in the dataset. One might consider this to be a 
vulnerability whereby an attacker could analyze the occurrence of chaff point descriptors to distinguish genuine 
points from chaff points. Such an attack would seem especially plausible on a small scale dataset where the diversity 
of the minutiae descriptors is limited. 
 
During authentication, the user presents a fingerprint image which is aligned with one or more templates using high 
curvature points as described in Nandakumar et al. (2007). The quality minutiae points are selected from the query 
fingerprint and matched with points in the vault set in order to filter out most of the chaff points. Minutiae 
descriptors are extracted from the fingerprint and binarized. The descriptor is XORed with each selected query 
minutiae and its ordinate value to obtain a codeword C', which is decoded to obtains a representation of the ordinate 
value. If the ordinate value is correctly decoded for (n+1) genuine points in the vault, the polynomial p(x) is 
correctly reconstructed and the query is validated. 
 
Performance 
 
The researchers tested the proposed method against 100 fingerprint images from the FVC2002 DB2 dataset, 
conducting 100 genuine comparisons and 9900 imposter comparisons. Results yielded 5% FRR at 0.01% FAR 
where the polynomial degree n=6. FRR rose abruptly where the polynomial degree n≥9. They also tested the method 
using principal components analysis to reduce the dimensionality of the descriptors. This scenario yielded higher 
false acceptance rates than when principal components analysis was not used. 
 
Álvarez et al. (2009) 
 
Álvarez et al. were among the few researchers to implement the fuzzy extractor method proposed by Dodis et al. 

                                                 
29 In a coordinate ,  represents the ordinate. 
30 The researchers adopt the methodology proposed by J. Feng, 2008, “Combining Minutiae Descriptors for 
Fingerprint Matching,” in Pattern Recognition 41(1): 342-352. 
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(2008). The proposed method is resistant to collusion attacks because the biometric input is not used in the creation 
of the polynomial; instead the coordinates of the minutiae points are salted by a secret key that is unique across 
applications and can be reissued in the event that the template is compromised. 
 
Method 
 
During enrollment, the user presents an iris image and a predefined secret key  represented in a given base.31 
Helper data from the iris image is stored in the dataset. The coefficients of the polynomial  of degree  are 
derived from bits of the secret key  such that 
 

 
 
Then  random points are computed such that  where  is a parameter that controls 
the tolerance of the templates. The value of  should be much greater than . Reed-Solomon encoding 
concatenates the coordinates  of the  points forming a codeword set . A hash 
function  obfuscates the codeword set  producing a set of hash values 
 

 
 
Then the iris template  is divided into  parts . Each value  
is subtracted from each codeword of the set , producing in the delta set  in which each element 

 such that 
 

 
 
Stored in the dataset are the hash set , the delta set , and control parameters necessary for authentication, which 
include: the polynomial degree , the Reed-Solomon parameters , the hash function used, and the base 
in which  is represented. 
 

During authentication, the user presents a query iris image and secret key. The query template  is divided into  

parts such that . The elements of  and the stored delta set  are used to 

compute the codeword set . The elements of  are hashed using the stored hash function, 

and the hashed elements of  are compared against those stored in the dataset. If at least  values coincide, the 
template is considered a match. But the secret key also must be verified before authenticating the user. A Reed-
Solomon decoding algorithm obtains at least  points . Lagrange interpolation obtains the coefficients 
of the secret polynomial . If the polynomial is successfully reconstructed, the secret  would be revealed and 
the user would be authenticated. 
 
 
Performance 
 
The researchers tested the proposed method against 175 iris images using an algorithm they developed in Java. They 
achieved 11.1% FRR at 0.67% FAR, where the base of  is 512, the polynomial degree , and . 
These results are not acceptable for most practical applications, and they are particularly unsatisfactory given that 
iris applications typically yield lower error rates. But the fuzzy extractor method has been observed little in practice, 
and the method ought to endure more rigorous experimentation using various combinations of parameters and 
inputs. 
 
Merkle et al. (2010) 
 

                                                 
31 Base 10, 16, 256, 512, etc. 
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Merkle et al. published this paper in reaction to the concern that variations of the fuzzy vault scheme produced 
templates with no more than 50 bits of entropy when applied to fingerprint biometrics.32 The researchers pursued the 
suggestion of those who made that claim, which was to buttress the fuzzy fingerprint vault method using multiple 
fingerprints. The proposed method naturally follows that of Nandakumar and Jain (2008) who also applied the fuzzy 
vault scheme to encrypt singular representations of multiple fingerprint impressions. 
 
Method 
 
Upon presenting a fingerprint image, features are extracted in the form of a vector which respectively 
indicates the minutiae coordinates and the index of the fingerprint from which the minutiae point originated. The 
researchers claimed it would be too taxing for the system to distinguish genuine points from chaff points were the 
vector to include information on the minutiae angles; therefore they did not store angle data in the vector. The 
researchers optimized feature extraction in several ways. One novel optimization was to restrict the selection of 
genuine and chaff points to those within a confined area.33 Optimizations developed from prior studies include the 
exclusion of unreliable minutiae for the feature vector during enrollment, the enforcement of a minimum distance 
between genuine and chaff points, and the enforcement of a minimum number of minutiae points per finger. 34 And 
they pre-aligned the fingerprints and the threshold for rotation. The feature vectors of all fingerprints captured by the 
acquisition device were stored in the same set rather than in separate sets. Doing so exponentially increased its 
resistance to brute force attacks.35 However the researchers observed that the proposed method might be vulnerable 
to brute force attacks than other variants of the fuzzy cryptosystem because an attacker can verify when a 
polynomial is recovered using the hashed value of the secret coefficients, thereby enhancing the efficiency of an 
attack. Unlike the original fuzzy vault scheme by Juels and Sudan (2002), the proposed method evaluated the secret 
polynomial according to the minutiae indexes rather than the actual biometric data.36 
 
During authentication, the user submits a query fingerprint image. The image is prealigned and a vector of quality 
minutiae points is extracted from the aligned image. The feature vector is matched against one or more templates in 
the dataset. A Reed-Solomon decoder, specifically the Peterson-Berlekamp-Massey decoder used by Juels and 

Sudan (2002), is used to recover the secret polynomial, which will be recovered only if there are at least  
matching points between the query template and the genuine points in the vault set. The correctness of the 
polynomial is compared against the hash value of the true polynomial stored in the dataset. 
 
Performance37 
 
Merkle et al. tested the proposed method against 864 fingerprints. They tested a control group without any chaff 
points, and the results were optimal at 89% FRR where . Using this as a benchmark, they increased the 
minutiae quality value  over several iterations. Where  the false and genuine match rates remained 
nearly unchanged, but where  the false match rate rose by 30%. Therefore the most practical results offered 
by the proposed method are approximately 1% FRR where  and . Enforcing a minimum number of 
minutiae per finger increased match rate by up to 3% and reduced enrollment rate by up to 7%, with at least 9 
minutiae per finger being the optimal. Their prealignment method omitted all poor quality fingerprints at the 
expense of 20% false positives, whereas without prealignment omitted 86% poor quality images at the expense of 
35% false positives. As the value of the tolerance parameter rose, false match rates rose significantly while false 
non-match rates bore no significant change. 
 
4.4 Homomorphic Encryption 
                                                 
32 See P. Mihailescu, A. Munk and B. Tams, 2009, “The Fuzzy Vaults for Fingerprints is Vulnerable to Brute Force 
Attack,” in BIOSIG 2009: Biometrics and Electronic Signatures: 43-54. 
33 Such that an area . This was found to be the most commonly plotted area 
from a sample of 5.8 million minutiae points. See p. 3. 
34 See pp. 4-5 for more information on quality filtering optimizations. 
35 To store each feature vector in its own set and concatenate the sets would result only in a linear increase of 
entropy. An exponential increase is significant. 
36 See pp. 5-6 for more information on encoding the secret polynomial including pseudocode for the enrollment stage. 
37 Based on their empirical results, the researchers offer a list of recommended parameter values on p. 11. 
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An encryption method is homomorphic if the structure of the ciphertext is preserved in the encryption of the 
plaintext. Homomorphism has a “malleable” property, meaning that the ciphertext can be converted into another 
ciphertext that also reverts to the original plaintext. Homomorphic encryption can be used to calculate the similarity 
between an input templates and stored templates in the encrypted domain, preventing servers from extracting 
sensitive information from a query. Many of the proposed homomorphic encryption methods make use of existing 
cryptosystems proposed by Paillier, Goldwasser-Micali, and ElGamal, all of which are semantically secure 
protocols. Homomorphic encryption may be applied to one step in the template protection processes. This section of 
the report reviews methods in which homomorphic encryption protocols are the primary means for protecting 
biometric templates. 
 
4.4.1 Method 
 
Paillier 
 
Variations of the Paillier cryptosystem are additively homomorphic, meaning that the ciphertext is equal to the sum 
of two plaintexts (x1, x2) such that  
 

å(x1)·å(x2)=å(x1,x2 mod m) 
 
The encryption of a plaintext  is expressed 
 

å(x)=gxrm mod m2 
 
where m is the modulus g with a block size r. 
 
Goldwasser-Micali 
 
Variations of the Goldwasser-Micali cryptosystem are multiplicatively homomorphic, meaning that the ciphertext is 
equal to the product of two bits (b1, b2) such that  
 

 
 
ElGamal 
 
Variations of the ElGamal cryptosystem are multiplicatively homomorphic, meaning that the ciphertext is equal to 
the product of two plaintexts (x1, x2) such that  
 

 
 
4.4.2 Vulnerabilities 
 
The malleable property of homomorphic encryption allows someone with access to a ciphertext to modify its 
contents and produce a new plaintext. Theoretically this would allow an attacker with access to a dataset of secured 
templates to modify the contents such that it would resemble the attacker instead of the genuine owner. 
 
Nagar et al. (2006) suggested the application of a homomorphism to obfuscate the helper data used to unlock vault 
sets in fuzzy cryptosystems.38 
 
4.4.3 Performance 
 
There have been few empirical tests on template protection methods using homomorphic encryption. But 
verification rates are impressive in the few tests that have been conducted. Ye et al. (2009) achieved the best results 

                                                 
38 See Nagar, Abhishek, Karthik Nandakumar and A. K. Jain, “Biometric Template Security,” SPIE: 3. 
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using homomorphic encryption but did not meet the performance target of 1% FRR at 0.1% FAR. The protected 
templates matched or exceeded the minimum length necessary for use as cryptographic keys in common security 
protocols like AES. Barni et al. (2010) proposed a method that was able to identify an 80-bit template from a dataset 
of 100 templates in 45.58 seconds. Huang et al. (2011) proposed a method that improved that speed by almost five 
times. 
 
4.4.4 Articles 
 
Barbosa et al. (2008) 
 
Barbosa et al. proposed a parametric key generation method that borrowed the encryption and decryption algorithms 
from the Paillier cryptosystem.39 The researchers adapted the work of Bringer et al.40 to develop a set of 
identification classifiers. The proposed method does not expose identities in the process of authentication or 
identification, upholding the privacy of the user in distributed authentication systems like those on the Internet. They 
claimed their method delivered more accurate results even among behavioral modalities. They criticized fuzzy 
cryptosystems and other methods based on error correction codes for their poor performance and their ability to 
secure data against anything except eavesdropping attacks. The researchers did not test their method empirically. 
 
Method 
 
The proposed method assumes that the acquisition device is capable of processing the biometric image into a binary 
string and performing cryptographic operations on the string. The system initializes by generating a secret key using 
the key generation algorithm from the Paillier cryptosystem. Given a security parameter 1k the algorithm generates 
the following: n=pq where p and q are two large random prime numbers; ; and a random 

integer . It follows that the multiplicative inverse μ exists, such that  
 

 
 
hence the public key ke=(n,g) and the secret key kd=(μ,λ). For each transaction the user submits a query from which 
biometric features are extracted in the form of a vector v=(v1…vk). The features are classified according to the 
public parameters and the profile information, returning a set of classification values. The classification algorithm, a 
“support vector machine,” 41 uses homomorphic encryption to compute the classification values, such that 
 

 
 
where SVi,j contain vectors that define the inner and outer hyperplane in a k-dimensional feature space, and K is a 
function that projects data onto a higher dimensional space and computes the scalar product. The encryption 
algorithm produces a ciphertext c=gm·rn mod n2 where m is a plaintext message, r is a random integer, and n and g 
are derived from the public key ke=(n,g). The ciphertext is shuffled into a random vector to be stored in the dataset. 
During authentication, the system decrypts the elements of the shuffled ciphertext. The decryption algorithm outputs 
a plaintext m=L(cλ mod n2 )·μ mod n where μ and λ are derived from the secret key kd=(μ,λ). 
 
Ye et al. (2009) 
 
Ye et al. designed a biometric authentication protocol that preserved the anonymity of the authenticating user. They 
pursued three goals. Firstly, they sought to build a system that never revealed the identity of the user to the system. 

                                                 
39 See Pascal Paillier, 1999, “Public-Key Cryptosystem Based on Composite Degree Residuosity Classes,” in Lecture 
Notes in Computer Science 1592: 223-238. 
40 Bringer, J. et al., 2007, “An Application of the Goldwasser-Micali Cryptosystem to Biometric Authentication,” in 
Lecture Notes in Computer Science 4586: 96-106. 
41 See K. Crammer and Y. Singer, 2001, “On the Algorithmic Implementation of Multiclass Kernel-Based Vector 
Machines,” in Journal of Machine Learning Research 2: 265-292. 



 

DRDC CSS CR 2011-29 
 

Methods in prior research often encrypted the templates after each transaction but exposed the owner of the template 
at some point in the transaction process. Secondly, like prior researchers, they sought to build a system that 
withstood intraclass variability. And thirdly, they sought to construct a scalable system that would perform well in 
environments with large datasets, while controlling the tradeoff between security and performance. Their solution to 
the complexity issue was to keep an authenticating user anonymous only to k but not the entire dataset, where k is a 
parameter of anonymity. The proposed method was similar to the k-anonymity model by Sweeny. 42 The proposed 
method optimized the dissimilarity among members of the same k-member cluster. The researchers mentioned the 
possibility of designing a template protection method based on secure multiparty computation, but they opted for 
homomorphic encryption due to its allegedly superior efficiency. 
 
Method 
 
The proposed system consists of three devices: a server, a dataset, and a biometric acquisition device. These devices 
are used in three high level procedures. In the first procedure, triggered by an enrollment request, the server 
preprocesses the image by way of k-Anonymous Quantization. The resulting quantization table will be used to 
narrow the scope of future queries from the entire dataset to a group of likely candidates called a “k-member 
cluster,” which was designed to boost the speed of identification. The server stores the quantization table in a 
publicly available dataset. In the second procedure, triggered by an authentication request, indexes from the dataset 
are selected in a secure fashion. In the final procedure, distance measurements between a query template and one or 
more protected templates are conducted in the encrypted domain. 
 
During enrollment the user presents an iris image x. The researchers use the Paillier homomorphic encryption 
scheme to derive the public key from the input x such that 
 

 
 
where N is the product of two secret primes and r is a random number. 
 
During authentication, the user submits a public key and an iris image. A modified Hamming distance algorithm 
measures the dissimilarity between the query iris pattern and one or more stored iris patterns in the encrypted 
domain. 43 The distance between the query iris and one or more secure templates is calculated in the encrypted 
domain. 
 
Performance44 
 
The researchers tested the proposed access control system against 1,948 iris images from the CASIA dataset. It took 
11.5 hours to encrypt and match 10,000 iris images, or about 4.15 seconds per image, from the dataset on a machine 
with a 2.4 GHz CPU and 2 GB RAM. They achieved ~4% FRR ~0% FAR. 
 
Rane et al. (2009) 
 
Rane et al. designed a homomorphic cryptosystem for securing fingerprint templates and computing the Hamming 
distance or Euclidian distance between templates in the encrypted domain. The researchers adopted the Paillier 
encryption protocol. They did not test the accuracy of the proposed method. 
Method 
 
For each transaction, the user presents a fingerprint from which a binary feature vector xn is extracted. The query 
will be compared against a protected template yn stored on the dataset. The researchers adopted the Paillier 
cryptosystem is used to encrypt and decrypt the template information prior to computing the distance metrics, such 
that 

 

                                                 
42 See L. Sweeny, “k-Anonymity: A Model for Protecting Privacy,” International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems, 10(50), 557-570, 2002. 
43 See p. 4 for a description of their modification. 
44 Results are discussed in great detail on pp. 12-15. 
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where r is a randomly generated number, p and q are large prime numbers, N=p·q, and g is a number selected such 
that gcd(L(gë mod (N2))N)=1. A public key is defined as (N,g) and a private key is defined as (p,q). The client 
encrypts the query fingerprint xi

 into îri (xi) using the above protocol. The encrypted results are transferred to the 
server. The server then computes the following: 
 
 

 
 

where  and . The result  is . This computation is executed in the 
encrypted domain, so the server has no knowledge of  or . The server then generates a random number  and 
computes 
 

îrd (B+C)≡ îrb (B) îrc (C) mod (N2) 
 
where rd=rb rc mod(N). The results are transferred to the client. The client then generates a random number ra and 
computes 
 

 
 

where  is the binary Hamming distance, ,  and . That value of  is 
unknown to Alice. The squared Euclidian distance can be expressed as 
 

 
 
Decryption is computed such that 
 

 
 

where  and . 
 
Barni et al. (2010) 

Barni et al. proposed a homomorphic cryptosystem that facilitated the matching of fingerprint templates in the 
encrypted domain. 
 
 
Method 
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At a high level, the proposed encryption method consists of three stages. In the first stage, the image is captured and 
processed into a template. For each transaction the user presents a fingerprint image to an acquisition device, and 
features are extracted from the query image to obtain a template whose structure reflects that proposed by Jain et al 
(2000).45 In the second stage, the template is quantized. Both the first and second stages significantly influence the 
verification performance of the system. In the third stage, the quantized template is encrypted with a public-key on 
the server using a homomorphic cryptosystem. Matching occurs in the encrypted domain.  
 
The proposed encryption protocol, which is executed in the third stage of the method, incorporates elements of the 
Paillier protocol and the ElGamal protocol using elliptic curves to preserve bandwidth. The distances between the 
quantized query vector and the vectors in the dataset are computed in the encrypted domain using these two 
cryptosystems.46 If simply accepting or rejecting the user based, the servers computes  
 

 
 

where  is a random integer. The user will be rejected if R =0. 

 
Performance 
 
The researchers tested the proposed method against 408 fingerprint images. The results yielded 6.5% EER. At the 
configuration necessary to achieve this level of accuracy, they were able to identify 80-bit templates in a dataset of 
100 templates in 45.58 seconds at a quantization step of 4. Computations were conducted on machines with 2.4 GHz 
processors and 4GB RAM. 
 
Huang et al. (2011) 
 
Huang et al. proposed an encryption method that they claimed was computationally efficient. The proposed method 
uses homomorphic encryption, oblivious transfer, and garbled circuits. 
 
Method47 
 

 
Figure 16: System overview (2011: 3) 

                                                 
45 See A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, 2000, “Filterbank-based fingerprint matching,” IEEE 
Transactions on Image Processing, vol. 9: 846–859. 
46 The protocol is discussed in Mauro Barni, 2010, “Privacy-Preserving Fingercode Authentication,” in 12th ACM 
Multimedia and Security Workshop. 
47 Source code for the software is freely available at http://www.mightbeevil.org/secure-biometrics/ 
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At a high level the proposed protocol consists of three stages. First is to securely measure the Euclidian distance 
between the query and storage templates. Second is to securely match the encrypted templates. The third stage is to 
obliviously transfer the match results. To preprocess the images, the researchers used the filterbank approach 
proposed by Bazen et al. (2000).48 

 
The Euclidian distance measurement protocol is based on an additively homomorphic encryption scheme. The 
server inputs a vector matrix [vi,j]M×N and the client inputs a single feature vector [v'q…v1

N]. The distance di between 
the stored vector vi and the query v' is expressed verbosely as 
 

 
 
resulting in a distance vector d={d1,d2….,dM}. The server transfers the data to the client using a garbled circuit 
protocol. It begins with knowledge of the distance measurements d and generates a set of nonce masks 
r=[r1,r2,…,rM] and then sends the client 
 

 
 
where pk is the client’s public key. The sampling range of ri should be large enough that d'i and di are statistically 
indistinguishable. A backtracking protocol is used to transfer the match results. The protocol ensures that the server 
gains no knowledge of the data and the client gains nothing other than the data associated with the closest match. 
 
Performance 
 
The researchers tested the computational efficiency of their method. They claimed the method performed with 4.6 
times the speed and 58% of the bandwidth of the method proposed by Barni et al. (2010). The tests were conducted 
on similar machines, with 2.0 GHz processors and 4GB RAM. Distance measurement accounts for a majority of the 
processing time, and circuit garbling accounts for a majority of the bandwidth. They did not test the verification 
performance of their protocol. 
 
Further Reading 
 
Huang, Yan et al. 2011. “Efficient Privacy-Preserving Biometric Identification.” 18th Network and Distributed 
System Security Symposium. http://www.mightbeevil.org/secure-biometrics/ndss-talk.pdf. 
 

                                                 
48 See A. Bazen, G. Verwaaijen, S. Gerez, L. Veelenturf, and B. van Der Zwaag, 2000, “A Correlation-Based 
Fingerprint Verification System,” in ProRISC2000 Workshop on Circuits, Systems and Signal Processing. 
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4.5 Local Aggregation 
 
Local aggregation is a means of extracting features from a biometric input by counting the number of features that 
appeared within the confines of many randomly generated regions superimposed the input. Figure 17 illustrates this 

concept, where each element in the set contains the 
number of features found in one of the randomly 
superimposed regions. Regions are generated 
according to a secret key that is unique to every user. 
This implies that each user has a unique but 
repeatable pattern of random regions. If someone 
were to present a stolen image without its 
corresponding key, features would be counted 
incorrectly and the imposter would be invalidated. 
 
Templates produced by this method can be cancelled 
by reenrolling the biometric with a different key, 
resulting in a new pattern of random regions. The 
method is considerably tolerant to intraclass 
variations because it checks only for the presence of 
features within wide regions. Intraclass variations 
due to minor rotation, translation, and warping are 

not likely to push the features outside the boundaries of the regions as long as the input is aligned. Cryptographic 
keys are computed from metrics like the number of minutiae points within each region, which are easier to 
reproduce in subsequent transactions than the exact coordinates and angles of the minutiae points. Overall this 
method possesses the advantage of computational simplicity. Furthermore, because this approach does not transform 
the biometric features, it avoids producing inadvertent errors due to arbitrarily or unreliably designed transform 
functions. 
 
4.5.1 Articles 
 
Sutcu et al. (2008) 
 
Sutcu et al. applied the Slepian-Wolf error correction framework to encrypt fingerprint templates.49 The proposed 
method counts the number of minutiae points from multiple, randomly placed regions of the fingerprint template to 
generate binary feature vectors appropriate for low-density parity check (LDPC) syndrome coding, a belief 
propagation algorithm.50 
 
Method 
 
At a high level, three steps constitute the enrollment and authentication stage. First, a feature map is extracted from 
an acquired fingerprint image. Second, a transform function maps the minutiae points to a binary feature vector. 
Finally, a syndrome encoding function maps the binary feature vector into a secure syndrome. The dataset stores the 
secure syndrome, the LDPC code, and a cryptographic hash of the binary feature vector. 
 

                                                 
49 See D. Slepian and J.K. Wolf, 1973, “Noiseless Coding of Correlated Information Sources,” in IEEE Transactions 
on Information Theory: 471-480. 
50 See Robert G. Gallager, 1963, “Low-Density Parity-Check Codes.” 

 
Figure 17: Local aggregation methods generate  
sets based on minutiae in each random region  
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For each transaction the user presents a fingerprint image from which a feature vector M=(xi,yi,èi) is extracted where 
xi,yi ,èi respectively indicate the coordinates and angle of the minutiae points. The number of minutiae points is 

counted within multiple cuboidal regions randomly 
superimposed on the feature vector. Figure 16 illustrates the 
manner in which the regions are superimposed. If the number 
of minutiae points within a given region is less or greater than 
a predefined threshold, a bit value of 0 or 1 is respectively 
appended to the feature vector. In an enrollment transaction, a 
Slepian-Wolf encoder generates a syndrome from the feature 
vector and stores the syndrome in a dataset. In an 
authentication transaction, the LDPC decoder combines the 
secure template s and the query template b and applies belief 
propagation. The result is a an estimate  of the enrolled 
feature vector a. Access is granted to the user if the hash 
values of  and a match. 
 
 

 
Performance 
 
The researchers tested the proposed method against 1,035 prealigned minutiae maps from 69 fingerprints. They 
achieved as low as 11% FRR at 0.01% FAR, meeting at 2.7% EER. At this level of accuracy the protected template 
possessed 30 bits of security. Its accuracy is owed in large part to the prealignment of the fingerprint template. 
 
Jin et al. (2009) 
 
Jin et al. produced cancelable fingerprint templates by counting the number of minutiae points within randomly 
generated regions superimposed on the acquired image. They claimed the method was resistant to minor intraclass 
variations due to translation and rotation. The proposed method required no prealignment of the images because the 
minutiae are projected onto a two dimensional space according to reference minutiae. 
 
Method 
 
Minutiae points Mi=(xi,yi,èi) are extracted where xi ,yi,èi respectively indicate the coordinates and angle of the 
minutiae points. One minutiae point Mr is selected as a reference point by which all other minutiae points will be 
translated such that 
 

 
 
where W and H are the width and height of the image. This translation centers the minutiae points around the 
reference point, which ultimately allows the proposed scheme to tolerate intraclass variations. The number of 
minutiae points within the confines of each random region is stored on a vector. The researchers used triangular 
regions to preserve computational simplicity. They surmised that other shapes were unlikely to enhance entropy or 
matching accuracy; rather they found that error rates could be reduced simply by increasing the number of regions. 
 
The server assigns a unique, secret key to every user during enrollment. The key is a set of random numbers that 
determines the shape and location of several triangular regions to be superimposed on the image. In the event that a 
template is compromised, the key can be reissued to cancel the compromised template and enroll a new one. Within 
each triangular region, the number of minutiae points falling within an angular range is recorded to a vector. Figure 
17 illustrates this concept, where the number of minutiae points is counted per angular range within a superimposed 
region. The feature vectors for multiple random regions are concatenated into a bit string. 
 

 
Figure 18: Example of a randomly placed cuboidal 
region containing seven minutiae points (2008: 4).
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Figure 19: Bit string as function of minutiae points per angular range per random region (2009: 526) 
 
Performance 
 
The researchers tested their method against 800 fingerprint images, using VeriFinger Standard SDK to extract the 
minutiae coordinates. They achieved 2.81% EER where 10 random triangles were used and 0.20% EER where 20 
random triangles were used. In the proposed method, the principal tradeoff for security was computational time, not 
matching accuracy. The researchers briefly mentioned that in a stolen-token scenario, EER can increase to more 
than 10%. The security of this method as it pertains to stolen tokens should be evaluated. This method is 
computationally simple compared to others reviewed in this report. 

Nagar et al. (2010) 
 
Nagar et al. proposed a method to secure fingerprint templates following the methodology of Sutcu et al. (2008). 
They extended the method to extract both the minutiae points and the fingerprint ridges. 
 
Method 
 
For each transaction, the user presents a fingerprint image from which a feature vector is extracted as shown in 
Figure 20. If the algorithm is developed to extract minutiae points, the feature vector will consists of xi,yi ,èi which 
respectively indicate the coordinates and angle of the minutiae points. If developed to extract fingerprint ridges, the 
feature vector will consist of xi,yi which represent the coordinates of the ridges. Geometric regions are randomly 
superimposed on the feature vector and the number of minutiae points or fingerprint ridges is counted in each 
region. Figure 20 illustrates this concept. For each region, three measurements are recorded when selecting minutiae 
points: (1) the sum of the closest distance of each minutiae point from the regional boundaries; (2) the average 
coordinate of all the minutiae present in the region; and (3) the standard deviation of the minutiae coordinates 
present in the region. If the number of features is less or greater than predefined median thresholds for these values, 
then a respective bit value of 0 or 1 is appended to the binary feature vector. The binary feature vector is curated 
such that only the most reliable bits are extracted. The bits are altered by a low density parity check, and the final 
output, a secure syndrome, is stored in the dataset. 
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Performance 
 

The researchers tested their method against 800 
fingerprint images from the FVC2002 Dataset-2, 
generating 500 random cuboidal regions per finger. 
They achieved as low 2% EER under normal 
circumstances, when an imposter has now knowledge 
of the template. Results fell to 3%EER when an 
imposter has knowledge of discriminable feature bits, 
and were worst at 10.2% EER when the imposter had 
knowledge of the aggregate wall distance. These results 
suggest that the method is robust against attacks 
whereby an attacker has knowledge of some, but not 
all, of the template information. These results signify a 
slight increase in accuracy compared to Sutcu et al. 
(2008), although this could be due in part to the 
prealignment of the fingerprint images. 
 
 

4.6 Multifactor Key Generation 
 
Multifactor key generation combines a biometric with one or more other inputs, such as a password or token, to 
produce cryptographic keys. This approach is essentially a form of salting, whereby the user supplies secret 
auxiliary information that that influences the transformation of the biometric image or template. Combining 
biometrics with other authentication factors has proven to be a reliable means of generating secure templates or 
cryptographic keys.  
 
From a security perspective, this method is advantageous because it combines something that the user is with 
something that the user has or knows. The principal tradeoff for security in multifactor key generation protocols is 
usability, not necessarily verification performance. Access control systems that use multifactor key generation could 
easily become a hassle to users who forgot their password or token. Furthermore, the need to present multiple inputs 
during authentication is impractical for applications like security checkpoints. 
 
4.6.1 Vulnerabilities 
 
Stolen Token 
 
Theoretically the security of the encrypted template is no greater than that of least secure authentication factor, 
assuming that any authentication factor can stolen and used by an imposter. Kong et al. (2010) criticized the method 
by Teoh et al. (2004), known for having achieved 0% EER, in which biometric inputs are irreversibly transformed 
by tokenized random numbers. The critics argued that the method lost any practical security when the token was 
stolen, thereby rendering the token redundant. Teoh et al. (2004) introduced multispace random projections as a 
means to harden the original method against stolen token attacks. 
 
4.6.2 Performance 
 
Empirical results on multifactor key generation have produced mostly good results. It has been tested on fingerprint, 
iris, face, voice, keystroke and multimodal biometrics. Teoh et al. (2004) reported perfect match rates from their 
experiment on fingerprint hashing, though they produced inconsistent results in subsequent studies. Some 
researchers argued that the high performance of schemes combining biometrics with a stored or known input were 
owed entirely to that second input; and therefore it was redundant to include biometrics in the key generation 
process. 

                                                 
51 From Abhishek Nagar, Shantanu Rane and Anthony Vetro, 2010, “Privacy and Security of Features Extracted from 
Minutiae Aggregates,” Mitsubishi Electric Research Laboratories. 

  
Figure 20: Example of local aggregation from randomly 
superimposed regions.51 
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4.6.3 Articles 
 
Monrose et al. (2001a) 
 
Monrose et al. proposed a multifactor key generation protocol that analyzed the keystroke dynamics of users as they 
typed passwords. If the keystroke pattern did not match the pattern recorded during enrollment, the system would 
not authenticate the user even if the password was correct. The proposed method adapts to changes in the typing 
pattern of a user over time. 
 
Method 
 

Each user account stores two data structures: (1) an instruction table containing i,áai,âai  for each feature i (a,l) that 

controls how the algorithm will harden the password using the biometric features; and (2) a symmetrically encrypted 
history file that contains measurements on all features recorded over some number of successful logins. For each 

feature i (a,l) the login program uses "pwd"' to decrypt áai or âai such that 

 

 
where  is a large prime number,52 G is a pseudorandom function family.53 This creates m points {(xi,yi ) } ≤ i ≤m. 
The login program, then decrypts the history with an algorithm hwpd' such that 

 
 
where ëi is the Lagrange coefficient for interpolation, expressed as 
 

 
 
If the hardened password decrypts the history file, the history file is updated to include the keystroke dynamics of 
the current login attempt and computes the standard deviation of all keystroke dynamics contained in the file. The 
researchers measured the duration of keystrokes and the latency between keystrokes in their implementation. They 
designed two variations of the proposed system: one used exponentiation54 and the other used vector spaces.55 These 
variations addressed several security vulnerabilities observed in the foundational approach described above. 
 
Performance 
 
The researchers tested their method against 188 authentication attempts on a program that associated users’ 
keystroke dynamics with their passwords. The results yielded 48.4% FRR where ~12 distinguishing features were 
recorded and 22.9% FRR where ~7 distinguishing features were recorded. This approach has an advantage of 

                                                 
52 160 bits is sufficient, p. 3. 
53 See R. L. Rivest, “Cryptography,” Handbook of Theoretical Computer Science, pp. 717-755. 
54 See pp. 5-6 for details on the variation using exponentiation. 
55 See pp. 6-7 for details on the variation using vector spaces. 



 

DRDC CSS CR 2011-29 
 

usability compared to other multifactor schemes like BioHash because the user does not have to supply two forms of 
information; for the biometric data is acquired automatically upon typing the password. However, due to its 
reportedly high error rates, it is likely that a legitimate user must input their password multiple times before the 
system authenticates them. The entropy of the hardened password depends on the entropy of the input password and 
the number of distinguishing characteristics parameterized in the keystroke analysis algorithm. 
 
 
 
Monrose et al. (2001b) 
 
Monrose et al. built upon their multifactor key generation scheme whereby a password is hardened by biometric data 
acquired during enrollment. They had applied their scheme to the keystroke biometrics, which meant that the input 
password consisted of an unambiguous sequence of characters. In this paper, the researchers attempted to apply their 
method to vocal biometrics. This presented a new challenge. Unlike passwords, vocal utterances vary for each 
transaction. Therefore the encryption of vocal characteristics was more complicated than merely running the input 
through a hash function. The authors were not satisfied by merely hashing a password extracted from by automatic 
speech recognition. Instead the proposed method attempted to recognize how a user uttered the password, storing the 
vocal features in a protected set. This allowed the system to verify identities based on vocal characteristics. 
 
Method 
 
During enrollment, the user utters a phrase and the vocal sample is segmented into 30-ms frames. Each frame 
corresponds to one component sound of the utterance. Silent frames are discarded. The segments are then mapped 
onto a set of features. An m-bit feature descriptor is derived from the segmented features. The researchers described 
three algorithms for extracting features but only reported on one that depended on the position relative to a plan 
through the centroid. The algorithm allowed them to produce 46-bit keys from two-second utterances. The algorithm 
can be expressed as 
 

 
 
where á is a fixed vector, ì(Ri) is a vector of the average values of the segment frames, c(Rj) is the centroid, and b(i) 
represents the position of ì(Ri) relative to the plane á·x=0 translated to a coordinated space whose origin is c(Ri). The 
resulting feature descriptor is a bit string. 
 
Performance 
 
The researchers tested the proposed method against 250 utterances. The proposed method achieved < 5% FRR 
where k=1.875 and v=0.25, and < 30% FRR where k=1.250 and k=0.95. In general, the number false rejects 
increased as k decreased and as v increased. It may be noted that telephones were used to acquire the biometric 
samples to the detriment of matching performance. Like their previous method, this multifactor key generation 
scheme has the advantage of usability. Both the password and the biometric are acquired in the same action. 
 
Teoh et al. (2004) 
 
Teoh et al. hypothesized that a multifactor key generation method that integrated biometrics with known inputs 
would safeguard the privacy of biometric data without significantly decreasing verification performance. They 
argued in favor of combining biometric data with a tokenized random number rather than a password which is more 
susceptible to theft, to generate or match an encrypted biometric template. Guided by this hypothesis the researchers 
developed an encryption method called “BioHash,” wherein fingerprint minutiae and a tokenized random number 
both influence the generation of a cryptographic key. The proposed method remains one of the top performers in 
terms of error rates relative to other empirical test results reviewed in this report. 
 
Method 
 
The proposed method involves two general steps: first to segment the biometric features, then to hash the features 
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using the tokenized random number as an influencing parameter. The researchers applied an integrated wavelet 
transform and a Fourier-Mellin transform to segment the fingerprint minutiae. Then they aligned the images to 
achieve a common size, angle, and position.56 The resulting feature data was altered by a quantization process, 
which consist of four steps: 
 

1. Derive a pseudorandom number {ri  RM | i=1,…,m} from the token. 

2. Apply the Gram-Schmidt process to transform the pseudorandom number into an orthonomal set of 

matrices {ri  RM | i=1,…,m}. 

3. Compute { Ã|ri  RM
 | i = 1,…,m}. 

4. Compute m-bit BioHash  such that 
 

 
 
where  is a predefined threshold. This quantization process distinguishes the BioHash method from other template 
protection methods. Upon executing the wavelet transforms and discretization algorithm, the end product is a 
template that cannot feasibly be reverse engineered without presenting both the biometric image and tokenized 
random number. 
 
Performance 
 
The researchers tested the proposed method against 600 fingerprint images, conducting 29,700 imposter attempts 
and 1,500 genuine attempts. They claimed to have achieved 0% EER where the bit length of the template was equal 
to or greater than 40. The results implied that the approach is reliably error-tolerant and perhaps the most robust of 
all those reviewed in this report. But they were contested by several academics. Cheung et al. (2005) could not 
reproduce high quality match rates using the proposed transform method, feature extraction method, and similarity 
measure. Kong et al. (2006) argued that 0% EER was owed entirely to the tokenized random number; therefore to 
integrate biometrics with a token would be redundant as the token alone sufficed as the perfect password. Having 
tested the method in a stolen-token scenario, the critics observed it to distinguish genuine and imposter users very 
poorly. 
 
In defence of their methodology, Teoh et al. (2007) published the match rates of their method in stolen-token and 
stolen-biometrics scenarios using two different feature extraction methods. In the stolen-biometrics scenario, they 
achieved 2.11% EER and 0% EER respectively; whereas in the stolen-token scenario they achieved 26.79% EER 
and 21.53% EER. BioHash and its variants thus remain vulnerable to imposters who wield stolen tokens. The 
researchers proposed a multistage approach to their method that enhanced the matching performance in the event of 
a stolen token.57 
 
Hao et al. (2006) 
 
Hao et al. proposed a method for encrypting iris images in such a way that produced error-free keys despite the 
                                                 
56 See pp. 2248-9 for a detailed example of the transforms used. 
57 See pp. 2040-2. 
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typical 10-20% error bits found in iris codes. They hypothesized that correcting errors in biometric data using Reed-
Solomon and Hadamard codes prior to matching would improve performance without sacrificing security. 
 
Method 
 
The proposed method, as shown in Figure 21, encompasses two aspects: an error-correction code that combines 
Reed-Solomon and Hadamard codes, and multifactor key generation using an auxiliary secret, e.g. a password. The 
Reed-Solomon code corrects errors in the input image at the block level, and then the Hadamard code corrects errors 
at the binary level. An XOR operation between the binary string èps a reference iris code èref produces an encrypted 
template èlock to be saved on a smartcard or other token, defined as 
 

èlock=èps  èref 

 
To decrypt the key, an XOR operation between an input image and the encrypted template is executed such that 

 

 
 

where  is the error vector between two iris codes. Error correction recovers the trial value of the biometric key  

and a match exists where  is within the correction capability , which is verified by comparing the hash 
values. 
 

 
Figure 21: Schematic overview of the proposed system (2006: 8). 
 
Performance 
 
The researchers tested the proposed method against 700 iris images. Where block length was equal to six, they 
achieved 0% FAR and 0.47% FRR from 241,300 imposter comparisons and 3,150 genuine comparisons. These 
among the best results of the studies reviewed in this report. They noted that the Hadamard code caused a tradeoff 
between error tolerance and key length. Thus while they achieved an even lower false rejection rate where the block 
length equaled seven, the loss in entropy made the key less than optimal. 
 
Ballard et al. (2008) 
 
Ballard et al. observed a tendency for some biometric modalities to produce highly entropic keys.58 The objective of 
their research was to create highly entropic keys regardless of the modality. They proposed a multifactor key 
generation method that augmented the entropy of the key. 

                                                 
58 See, e.g. Monrose et al. (2001a) and  
 
Monrose et al. (2001b). 
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Method59 
 
Two algorithms constitute the method: enrollment and key generation. During enrollment, the user presents a 
biometric B and a password. Having extracted the features from the input, their statistical characteristics are 
calculated and an index of each feature is stored in a table. Error correction codes quantize the range of the feature 
into partitions of a length equal to the quantization width  of the map from theset of biometric samples 
 

 
 

where ì is the median of each feature (â1 ),…, (âl). The key is derived from a random oracle applied to the 

password, the feature indexes, and the lower boundaries of the partition that contains the output of each feature. The 
feature data and quantized outputs are encoded into secure template. The template T consists of the encrypted 
feature set C and token v such that 
 

 
 
where K is a cryptographic key and ð is an optional password serving as an extra source of randomness. During 
authentication, the user submits a query biometric and password with which the key generation algorithm will 
attempt to decrypt the stored template. If the key matches the token in the stored template, the algorithm can recreate 
the list of feature indexes and quantization offsets. The system can only return a match if the key generation 
algorithm quantizes the output range of the features in the same way the enrollment algorithm does.  
 
Performance 
 
The research tested the proposed method against human forgers and the concatenative synthesis generative 
algorithm.60 Respectively, they achieved as low as 17.7% EER against human forgers and 27% EER against the CS 
algorithm. Such results suggest that the method is not suitable for practical applications. 
 
Kanade et al. (2010) 
 
Kanade et al. proposed a method for encrypting multimodal biometric templates whose keys possessed greater 
entropy than those produced in previous methods. As such their study is similar in its objectives and methodology to 
that of Merkle et al. (2010).  
 
Method  
 
The researchers used two layers of error correction in the enrollment phase. First they used Reed-Solomon codes, 
then Hadamard and BCH encoding for modality-specific error correction. They gave a higher weight to error 
correction for iris images because they have shown to produce fewer errors than fingerprint images. The output of 
the Reed-Solomon error correction is salted by a user specific secret. This salt serves as the cancelable property in 
the proposed method. The salted, error corrected output is then divided into two parts: one to be encoded by a 
Hadamard code, the other by a BCH code. Those outputs were concatenated and finally XORed with the 
concatenated uniform zero insertion values of the reference iris code and face code. During authentication, a query 
iris image undergoes uniform zero insertion and is concatenated with the face image input. This value is XORed 
                                                 
59 Pseudocode for the enrollment and key generation algorithms are shown on p. 5. 
60 For details on concatenative synthesis, see L. Ballard, S. Kamara and M. K. Reiter, 2006, “The Practical Subtleties 
of Biometric Key Generation,” in Proceedings of the 17th Annual USENIX Security Symposium: 29-41. 
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with the encrypted template, and the result is divided into two parts: one to one to be decoded by a Hadamard code, 
the other by a BCH code. The concatenated value must be “un-shuffled” by a password supplied by the user, and the 
resultant value will be decoded by Reed-Solomon codes. If successful, the result is a regenerated key. Figure 22 
illustrates the overall workflow of the proposed method. 
 

 
Figure 22: Schematic diagram of multifactor key generation enrollment and verification modules 
 
Performance 
 
Having tested the proposed method against 380,625 imposter comparisons and 1,750 genuine comparisons, the 
researchers were able to produce 210-bit keys at 0.91% FRR and 0% FAR and 168-bit keys at 0.11% FRR and 0% 
FAR. With a combined high level of entropy and low level of error puts, these results showed that the method 
effectively mitigated the tradeoff between template security and matching performance. These results suggested that 
a multimodal approach could effectively mitigate the tradeoff between template security and matching performance. 
Emerging now is a persuasive correlation between the quality of these results and those of the multifactor 
approaches.61 It suggests that the encryption of any single biometric may not be enough to produce reliably secure 
and competent templates in many cases. 
 
4.7 Noninvertible Transforms 
 
Noninvertible transforms are a generic means of obfuscating biometric template data by way geometric 
transformation. Transforms are executed either at the single domain or the feature domain. The literature has favored 
feature domain transforms, which alter features such as the position of the minutiae coordinates. By contrast, single 
domain transforms alter the pixels of the raw image.  
 
Figure 23 illustrates the manner in which minutiae points are repositioned by a feature domain geometric transform. 
The dots indicate the position and angle of fingerprint minutiae. Observe how they are repositioned after a Gaussian 
transform. Any template protection method could employ a noninvertible transform as one of several means of 
obfuscating the template data. Typically the parameters which influence the transform are used as the cancelable 
property in a protected template. For additional security, these parameters can be derived from a user-supplied input 
such as a password or a private key. The methods reviewed in this section use noninvertible transforms as the 
principal means of template protection. 
 

                                                 
61 See Monrose et al. 2001; Teoh et al. 2004; Hao et al. 2006; Nandakumar et al. 2007; Ouda et al. 2010. 
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Figure 23: Example of a noninvertible transform (Nagar, Nandakumar and Jain 2006: 2). 
 
4.7.1 Performance 
 
It is difficult to compare the performance of methods that employ noninvertible transforms because the methods and 
transforms vary significantly. Hirata and Takahashi (2009) achieved extremely low error rates using correlation 
invariant random filtering. But no other transform-based method met the target of 1% FRR at 0% FAR, and many 
yielded double-digit error rates. Therefore this report will avoid making a blanket assessment of the performance of 
noninvertible transforms. 
 
4.7.2 Articles 
 
Soutar et al. (1999) 
 
Soutar et al. reviewed an algorithm they developed at Mytec Technologies, Inc.,62 in which fingerprint data 
fundamentally influenced the makeup of a private key. The algorithm, simply called Biometric Encryption, 
processed the entire image, not just the feature data, in the production and retrieval of a key. Their goal was to 
produce 128-bit keys, which could be used in common encryption standards like AES. They used a correlation filter 
function H(u) to measure the degree of similarity between input and reference images.63 This, they claimed, helped 
to surmount the problem of intraclass variations but did not bolster the entropy of the key. They referred to the 
encrypted template as a Bioscrypt. 
 
Method 
 
At a high level, the user presents multiple fingerprint images to be transformed and linked with a cryptographic key 
during enrollment. An identification code is then stored in a lookup table. During authentication, the acquired image 
is again transformed. A key is retrieved from the lookup table, and the two identification codes are compared.  
 
Two filters process the images: a filter function H(u) and a transitory filter. The filter function is defined as 
 

 
 

                                                 
62 Mytec Technologies, Inc. has since been acquired by L-1 Identity Solutions. 
63 See J. W. Goodman, 1968, “Introduction to Fourier Optics”; A. VanderLugt, 1992, “Optical Signal Processing”; and 
E. G. Steward, 1995, “Fourier Optics: An Introduction.” 
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where  is the spatial frequency domain, Ao (u) and Ro (u) is an array of random numbers. 
 
During enrollment, the user presents T fingerprint images to train the system. 64 Fourier transforms are performed on 
each image to compute Ao (u) and Do (u). An array of random numbers R(u) is generated. The filter function H(u) is 
responsible for ensuring low intraclass variance and high interclass variance. It produces an output pattern co (x) that 
is linked with an N-bit key ko. In this linking process, co (x) is binarized and a lookup table is created and stored in 
the Bioscrypt to be used in key retrieval during authentication. Finally k0 encrypts data from H"stored" (u) 65 to be 
hashed and stored as an identification code ido in the Bioscrypt. Thus the Bioscrypt consists of a lookup table, ido, 
and Hstored (u). 
 
 
During authentication, the user presents T fingerprint images to be processed as in enrollment. Using Hstored (u) from 
the Bioscrypt, an output pattern c1 (x) is generated to be used in retrieving the N-bit cryptographic key. 
 
Implications 
 
This approach was tested on fingerprint images. The researchers noted that it could be applied to any modality as 
long as the data is represented as a two-dimensional array, like an image. Their method would eventually be 
implemented in the first commercial biometric template protection product called Bioscrypt. The method is more 
complex than many of the methods developed in successive research. Many critical details must be overlooked in 
summarizing it. Considering this, the method may be more expensive for systems to compute. 
 
Ang et al. (2005) 
 
Ang et al. designed a method for producing cancelable fingerprint templates. They applied a key-dependent 
geometric transform to the extracted features. Cancelling a template is a matter of changing the key used in the 
transform. 
 
 
 
 
 
 
 
 
Method 
 
During enrollment, the user presents a fingerprint from which a feature vector is extracted. Interested only in the 
design of the cancelable transform, the researchers preprocessed the image and extracted the features using 

VeriFinger SDK. For each minutiae point Mi a vector is built with 
the coordinates (xi,yi ), angle φi, type ti, and local feature vector 
Fi=(dij,θj,φij,nij,tj) for each neighbor minutiae point Mj where dij 
is the distance between Mi and a neighbor Mj, nij is the distance 
between their ridges, θij is the angle between their ridges. Figure 
24 illustrates the proposed feature vector when the number of 
neighboring minutiae points L=2. 
 
During verification, the user submits a query fingerprint from 
which a feature vector R is extracted, following the same model as 

in enrollment. The query vector  is compared against the stored 

vector  using a similarity function sl (i,j) where 
 

                                                 
64 The researchers suggested 4 to 6 images to train the system sufficiently. 
65 They encrypted this data because it was unique to each user and present at both enrollment and authentication. 

 
Figure 24: Diagram of the local feature vector 
where L=2 (2005: 246 
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and where  is a weight vector for each element of Fi

66
. Ultimately the matching score Ms is expressed as 

 

 
 
The user is authenticated if Ms is higher than a given threshold TP,the suggested value of which was tp=6(5L+1) 
 
Performance 
 
The researchers tested the proposed transform algorithm and matching algorithm against 800 images of 10 unique 
fingerprints, using the NIST Fingerprint Image Software to identify core points and extract the minutiae. They 
achieved 2% EER where the threshold tp=0.53 and 4% EER where tp=0.52. 
 
Chen and Chandran (2007) 
 
Chen and Chandran proposed a template protection that they claimed was more resistant to attacks than prior 
methods. As a benchmark they wanted to make the resultant keys compatible with the 128-bit Advanced Encryption 
Standard (AES). They also desired to make the template cancelable. The proposed method used Reed-Solomon error 
correction codes. 
 
 
 
 
 
 
 
 
 
Method 
 

                                                 
66 The methodology for calculating the weight vector was adopted from X. Jiang and W. Yau, “Fingerprint Minutiae 
Matching Based on the Local and Global Structures,” in Proceedings of the 15th International Conference on Pattern 
Recognition II (2000): 6038–6041. 
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Figure 25: Schematic diagram of transform- and error-correction-based method (2007: 3). 
 
As shown in Figure 25, upon enrollment, the biometric image undergoes a bispectral transform that is designed to 
eliminate bit errors. Specifically a Radon transform converts the image into an array of one-dimensional projections. 
Then an iterative, bispectral transform alters the projections in a noninvertible fashion.67 The resultant magnitude 
and angle matrices are converted to binary form. The “desirable” bits, having high interclass entropy and low 
intraclass entropy, are selected from the binary matrices. Templates can be cancelled by changing the number of 
iterations or the criteria for bit selection. Finally a lookup table is constructed with the two columns of N-bit 
sequences—one for the original key, the other for the bio-key—which are encoded with a Reed-Solomon coding 
scheme. 
 
Performance 
 
The researchers tested their method against three dimensional face images, which were normalized. Without error 
correction codes, they achieved 66% FRR at 0.26% FAR where key length N = 64 and 95% FRR at 0.0006% FAR 
where N = 512. After implementing Reed-Solomon error correction codes, they achieved 25% FRR at 1.22% FAR 
where key length k = 112 and 63% FRR at 0.09% FAR where k = 208. Neither approach produced results that 
would suffice for most real-world applications. They predicted that to implement Hadamard error correction code 
before the Reed-Solomon code would improve the matching performance, and this was confirmed in the tests by 
Hao et al. (2006). 
 
Boult et al. (2007) 
 
Boult et al. generated cancelable tokens called Biotopes by applying a noninvertible transform to minutiae points. 
Having explained the basic protocol, they further described how to implement it in such a way that supported 
multifactor key generation. The term “Biotope” was eventually trademarked and used in biotoken products sold by 
Securics, Inc. 
 
 
 
 
Method 
 

                                                 
67 See V. Chandran and S. L. Elgar, 1993, “Pattern Recognition Using Invariants Defined from Higher Order Spectra: 
One Dimensional Inputs,” in IEEE Transactions on Signal Processing (41): 205. 
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Figure 26: Schematic diagram of process for 
generating and matching biotokens (2007: 4). 
 

Figure 27: Schematic diagram of process for mapping data for use as 
biotokens (2007: 5). 
 

Figure 26 and Figure 27 give a high level overview of the process for generating and matching tokens. Fingerprint 
features are first extracted from an input image. The researchers used a Bozorth matcher, which takes as input a 
feature vector v=(x,y,θ,q) where x,y,θ respectively indicate the coordinates and angle of the minutiae points and q is 
a measure of quality.68 
 
Performance 
 
The researchers tested both the proposed method and the NIST VBT method against 4,950 imposter fingerprints and 
2,800 genuine fingerprints. The proposed method achieved 8.6%-1.2% EER and outperformed the NST VBT 
method by ~33%. Thus they claimed that the proposed biotoken method improved verification performance. 
 
Scheirer and Boult (2008) 
 
Scheirer and Boult proposed a form of cancelable biometric token or “biotoken” to be used in symmetric key release 
systems where both parties mutually validate the transaction. They designed the token to support one-time 
transactions and trust hierarchies. Furthermore they claimed their method allowed for better auditing, non-
repudiation, and protection against replay, phishing and man-in-the-middle attacks. The public key is the only 
information ever reused in subsequent transactions. Using the proposed biotoken the researchers designed multiple 
protocols for secure transactions and digital signatures. 
 
Method 
 
Revocable Biotokens 
 
For each transaction, the user presents a biometric image that is scaled, translated, and ultimately split into stable 
and unstable components, which are respectively called the quotient q and the remainder r. The quotient q is 
encrypted or hashed while the remainder r is left in the clear. Because the quotient q is stable, it can be used for 
exact matching. The measure of dissimilarity between two biometric signals d(p,q) is computed such that 

                                                 
68 For details on the Bozorth matcher, see C.I. Watson et al., 2004, “User’s Guide to NIST Fingerprint Image Software 
2.” 
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where c is a constant penalty to outliers. 
 
Nested Biotokens 
 
The researchers described a method for re-encoding biotokens, which builds hierarchies of trust and allows data to 
be released without revealing other secrets. In the same way that certificate authorities issue digital certificates in a 
hierarchy of trust, biotokens can be encoded multiple times to produce keys unique to specific applications. For each 
encoding, the transformed biotoken wj is re-encoded with a unique transform function T. The process can be 
expressed as 
 

 
 
where P is a public key used to encode the biotoken in the first iteration. 
 
Bipartite Biotokens 
 
Bipartite biotokens assume properties of fuzzy cryptosystems. An embedded polynomial obfuscates secret data with 
chaff data. The biotoken is transformed in such a way that allows data to be secured in it and released upon 
successful verification. This method is covered in depth by Scheirer and Boult (2009). 

Digital Signatures 
 
The sensor sends a public key to a remote signature server, which returns a transaction ID. The sensor then sends the 
bipartite biotoken signature to the server, which will generate its own local biotoken and match the two biotokens. It 
sends the biotoken signature to the sensor, which validates the received signature and appends an audit log with 
server information. This process attempts to mitigate the man-in-the-middle attacks. 
 
Maiorana et al. (2008) 
 
Maiorana et al. encrypted handwritten signature templates, proposing the use of hidden Markov models to compare 
the templates in the encrypted domain. 
 
Method 
 
As the user writes a signature on the acquisition device, the features are extracted in the form of time sequences, 
whose parameters include: horizontal and vertical position trajectory (xn,yn), pressure signal pn, path-tangent angle 
èn, path velocity magnitude vn, log curvature radius ñn, and total acceleration magnitude an where n is a discrete time 
index. Altogether the time sequence vectors are expressed as 
 

 
 
Each time sequence vector un is stored in a template matrix U=[u1…uN]. A noninvertible transform function fi [n] is 
applied to elements in the matrix through the linear convolution of the functions r(i)j,N1 [n] such that 
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producing a secure template T[n] of the transformed elements in u[n], such that 
 

T=[f(u1 ),…,f(un)] 
 
During authentication, the user writes a signature from which time sequence vectors are extracted. The 
representation of the query signature is compared against one or more secure signatures stored in the dataset using 
the Viterbi algorithm to calculate similarity score,69 such that 
 

 
 
where ë is the HMM model, defined by the number of hidden states H and the number of Gaussian densities M that 
describe the probability p(t) of the emission of symbol t from the state h,h=1,…,H. 
 
Performance 
 
The researchers tested the proposed method against 16,500 handwritten signatures. Results showed that this 
approach is not reliable. The method achieved its lowest equal error rate at 10.29% where the number of hidden 
states H=8, the number of Gaussian densities M=2, and W=2. The method may perform too poorly for most 
practical purposes until improvements are made; although it should be noted that the increase in EER was only 
slight compared to those of unprotected approaches. 
 
Shi et al. (2008) 
 
Shi et al. designed a framework that integrated feature extraction and noninvertible transforms in such a way that 
mitigated the tradeoff between security and performance. In their study they propose a feature extraction method 
called “MinuCode,” which they claimed was more reliable than past methods. MinuCode avoids reference core 
point determination and deals with the noise of fingerprint biometrics. 
 
Method 
 
Shi et al. first extracted the minutiae coordinates and plotted them onto a polar coordinate system, forming a 
MinuCode template through a process shown in Figure 28. They used tessellation quantification to alter the 
coordinates in such a way that centered on a region of interest. Then they applied a noninvertible transform to the 
MinuCode T=(b,a,o). They described three possible transforms. The first transform involves three steps, where  
 

k=(b×p×P×P)+(a×P×o) 
 
where P is a constant larger than a, b, or o. Then it encrypts a random string RS with a block cipher Ek () using k as 
the key. Finally publishes a new tuple T1=(RS,Ek (RS)). The second transform involves two steps. First it generates 
three random positive integers r1, r2, r3 and then it publishes a new tuple Tn=(Z1,Z2,Z3) with an application-specific 
parameter ë: Z1=b+r1 (a * P + o + ë), Z2=a+r1 (a * P + b + ë), Z3=o+r1 (a * P + a + ë) where P is a constant larger 
than a, b, or o. The third transform discards r1, r2, r3, and b, a, o. Before performing a match, the input images are 
automatically aligned using the minutiae-centered quotient calculation and tessellation quantification. Threshold 
mechanisms tm and tp are used to correct errors in minutiae locations: two regions are equal if there are at least tm 
equal neighbor minutiae, and finally two fingerprints are matched if there are at least tp equal regions. 
 

                                                 
69 The researchers cite L.R. Rabiner, 1989, “A Tutorial on Hidden Markov Models and Selected Applications in 
Speech Recognition,” in Proceedings of the IEEE 7(2):257-286. 
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Figure 28: Illustration of MinuCode (2008: 2). 
 
Performance 
 
The researchers tested the proposed method against 800 fingerprint images. After 9,900 imposter comparisons and 
100 genuine comparisons, their results yielded 1.35% EER. They were able to produce a 360-bit key, which is 
among the more secure keys of those reviewed in this report. 

Hirata and Takahashi (2009) 
 
Hirata and Takahashi, researchers at the Hitachi, Ltd. Systems Development Laboratory, produced cancelable 
templates with the goal of minimizing the tradeoff between security and performance. The researchers cited a prior 
study which found that a minimum average correlation energy filter could produce cancelable templates.70 They 
used number theoretic transforms, which are similar to Fourier transforms and allow the system to match templates 
in the encrypted domain.71 
 
Method 
 
Assume the following preliminaries: f(x,y) is the registered image; g(x,y) is the input image; F(u,v) is the number 
theoretic transform of the padded registered image; G(u,v) is the number theoretic transform of the input image; 
R(u,v) is a random filter; R(-1) (u,v) is the inverse of the random filter. The number theoretic transform ø has a cyclic 
convolution property of ø(a*b)=ø(a)ø(b) where a={a1 }, b={b1 } and * is convolution. This property facilitates 
correlation-based matching in the encrypted domain. The correlation between f(x,y) and g(x,y) is wf,g(p,q) expressed 
as 
 

 
 
where S(p,q) is the region that the registered image overlaps the input image at the displacement (p,q). The system 
computes peak-to-mean from the correlation to authenticate the user. Peak and mean represent the maximum and 
mean values of wf,g(p,q) respectively, and the peak-to-mean ratio is simply peak – mean. 

                                                 
70 See Savvides et al., 2004, “Cancelable Biometric Filters for Face Recognition,” in 17th International Conference on 
Pattern Recognition (ICPR 2004), 3: 922-925. 
71 For details on the number theoretic transform, see R.C. Agarwal and C.S. Burrus, 1975, “Number Theoretic 
Transforms to Implement Fast Digital Convolution,” in Proceedings of the IEEE 63(4): 550-560. 
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During enrollment, the user presents a fingerprint image. The client machine pads the acquired image and applies a 
number theoretic transform ø to the padded image. It multiplies the transformed image with a random filter, and the 
final product is sent to the dataset. The secure template can be expressed as T(u,v)=R(u,v)F(u,v) where R(u,v) is a 
uniformly random filter and F(u,v) is the number theoretic transform of the padded input image. During 
authentication, the user presents a query fingerprint image. The steps are repeated and the server matches the input 
images against one or more registered templates in the encrypted domain. 
 
Performance 
 
The researchers tested the proposed method against infrared finger-vein images. Having conducted 102 genuine 
comparisons and 10,302 imposter comparisons, they achieved a complete separation between the normalized 
frequency distribution of the genuine and imposter classes, which implies 100% accuracy. They found small traces 
(0.016%) of information from the original images, though they claimed this was too small to allow one to reverse 
engineer an encrypted image. 
 
Takahashi and Hirata (2009) 
 
Takahashi and Hirata attempted to resolve the tradeoff between template security and verification accuracy. The 
proposed method adopts the correlation invariant random filtering approach proposed by Hirata and Takahashi 
(2009) into a chip matching algorithm proposed by Mimura et al.72 This study culminated in U.S. Patent Application 
Publication 2008/0037833 A1. 

Method 
 
The researchers use a chip matching algorithm that builds upon their correlation invariant random filter (CIRF), 
which incorporates number theoretic transforms to achieve perfect secrecy.73 The algorithm operates as follows: 
 
(1) an input fingerprint image is processed to a binary image; 
(2) the core is detected using the focal point method; 
(3) minutiae coordinates are recorded in a set; and 
(4) similarity between the chip image and the local area is measured by the Hamming distance. 
 
Alignment of the input data is not required. As shownin Figure 29, during enrollment, the client machine 
preprocesses the fingerprint image from which the chip images will be clipped and filtered into a cancelable 
template to be stored on the server dataset. During authentication, the client machine presents an input image from 
which chips are clipped and filtered. The server cross-correlates each input chip and accept the user if the similarity 
score falls within a given threshold. 
 

 
                                                 
72 See Masahiro Mimura, Shuichi Ishida, and Yoichi Seto, 2001, “Development of Personal Authentication 
Techniques Using Fingerprint Matching Embedded in Smart Cards,” in IEICE Transactions on Information and 
Systems, E84-D(7): 812-818. 
73 See p. 2 for an overview of CIRF. 



 

DRDC CSS CR 2011-29 
 

Figure 29: Illustration of the chip matching algorithm (2009: 3). 
 
Performance 
 
The researchers tested the proposed method with different parameter values against 181 fingerprint images. Results 
yielded 5.0% FRR at 0.2% FAR. These results were inferior to the previous implementation by Hirata and 
Takahashi (2009), which was tested against finger veins and did not incorporate a chip matching algorithm. 
 
Scheirer and Boult (2009) 
 
Scheirer and Boult designed a protocol that combined the methodologies of revocable biotokens by Scheirer and 
Boult (2008) and the fuzzy vault scheme by Juels and Sudan (2002). Like the fuzzy vault, the proposed method 
utilized Reed-Solomon error correction codes. But it did not store the points at which the secret polynomial was 
evaluated. It is allegedly rotation and translation invariant. The researchers defined bipartite biotokens as revocable 
fingerprint tokens that have been split into stable and unstable components, of which the former is encrypted or 
hashed and the latter is left in the clear.74 
 
Method 
 
For each transaction, the user presents a fingerprint image and the client machine sends a request for transaction to 
the server. The method uses a Bozorth-like procedure to conduct matching, where the raw distance and angles 
d,a1,a2 are stored in pair rows and their stable components sd,sa1,sa2 are protected in a lookup table. To evaluate the 
polynomial, sd,sa1,sa2 are hashed into a value i that is stored in the gallery. The hash digest i is again hashed as h in 
subsequent transactions, which is used only to evaluate polynomials to produce encoded bipartite rows. When 
matching a query against one or more stored templates, the system created all the fields for each of its rows, 
including the hash value h. A probe row potentially matches a gallery row if it finds a matching w and if the residual 
values rd,ra1,ra2 are within threshold. The algorithm evaluated the polynomial w generating potentially correct 
rs,rs1,rs2 values.  
 
Performance 
 
The researchers tested the proposed method against 750 million imposter attempts on fingerprint images. They 
achieved 3% FRR at 0% FAR with 256-bit security and 2 bytes of error correction. A biotoken with 16 rows and an 
error correction level of 6 can withstand up to 2480 brute force attempts, which represents an impressive girth of 
security. 
 
The design of bipartite biotokens prevents cross matching, surreptitious key inversion (SKI), and blended 
substitution attacks. An attacker cannot cross-correlate biotokens even with access to the Reed-Solomon polynomial 
encodings, because the evaluation points are not stored within the encoding. The researchers note that the protocol 
was susceptible to an attacker whereby the attacker substitutes the columns of the biotoken with their own data, but 
they argued that this was a detectible action as it represents a denial of service to the genuine user. 
 
4.8 Parametric Key Generation 
 
Parametric key generation methods classify biometric features according to predefined parameters and generate a 
key derived from the parameter outputs rather than from the template itself. This approach mitigates the problem of 
intraclass variations because the shape and position of the features do not influence the construction of the encrypted 
template. For example, rather than store the locations of minutiae points, a fingerprint is classified simply as having 
an arch, loop, or whorl. Many parameters must be defined to ensure uniqueness among templates. The performance 
of any parametric key generation algorithm depends on the reliability of its parameters. A parameter is considered to 
be reliable if it consistently returns the same value upon many presentations of the same biometric. Therefore the 
best performing algorithms are likely to contain many parameters with simple definitions, allowing for many 
possible combinations and accurately reproduced queries. 
 

                                                 
74 See p. 3 for a more extensive discussion on the definition of bipartite biotokens. 
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4.8.1 Vulnerabilities 
 
Low Entropy 
 
The strength of a parametrically generated key is a function of the number of parameters defined and the number of 
possible outputs per parameter. The number of parameters that can be defined is limited by our knowledge of ways 
to reliably classify biometric features. To illustrate, Hao and Chan. (2002) were unable to produce keys greater than 
an average length of 40 bits despite having defined 43 parameters. In their concluding remarks the researchers 
recommended appending additional data to the key as a means of augmenting its entropy. Such data could include a 
password or timestamp. The bare, single-factor methodology for parametric key generation is likely to produce low 
entropy keys vulnerable to brute force attacks. 
 
4.8.2 Performance 
 
Parametric key generation has not performed well in empirical tests, although the methods reviewed in this report 
were only applied to handwritten signatures which tend to yield higher error rates than other modalities like 
fingerprint and iris. None of the proposed methods met the target of 1% FRR at 0.1% FRR, but Chen and Chandran 
(2007) came reasonably close at 1% EER. Parametric key generation is not a reliable template protection method for 
most practical applications. The method may be best suited for small scale applications where there is limited 
computing power.  
 
4.8.3 Articles 
 
Hao and Chan. (2002) 
 
Shortly prior to the time of this publication, electronic signatures were accepted as a legally binding under E-Sign 
(2000).75 Thus began the boom of e-commerce and, more importantly, the now common practice of digitally 
authenticating oneself on computer networks. Hao and Feng attempted to apply biometrics to public key 
infrastructure (PKI), the convention by which digital information was secured. The difficulty they observed in such 
an implementation was the fuzzy nature of biometrics data. Because biometric images vary slightly upon each 
acquisition, no person could reproduce their own private key using cryptographic algorithms that demand precise 
inputs. They proposed a cryptosystem called BioPKI that attempted to circumvent this problem and produce secure 
and reliable private keys from biometric data. 
 
Method 
 
BioPKI consisted of three stages: shape matching, feature encoding, and private key generation. Shaping matching 
is a means of ruling out poor quality features by comparing the acquired image against “good” sample images. In 
their study, Hao and Feng applied dynamic time warping to align the shapes of handwritten signatures prior to shape 
matching. The biometric features are then extracted from the acquired image and encoded into a template. Lastly, 
private keys are generated from the encoded template using the digital signature algorithm (DSA). During 
enrollment, the algorithm produces an encrypted template and discards the original image so that none of the 
original data is stored. During authentication, a user presents a biometric image which is again encrypted and 
compared against one or more encrypted templates in the dataset. The templates can be matched only if the same 
transforms were applied to them, and the original data never needs to be revealed in order to verify an identity. 
 
Performance 
 
Hao and Feng tested their method against 750 handwritten signatures. They achieved 28% FRR at 1.2% FAR, 
meeting at 8% EER. Such results, while undesirable for practical applications, represented a promising start to the 
development of biometric cryptosystems. They reminded the readers of the naturally higher error rate of signatures 
compared to other modalities, such as iris. Therefore it would be worthwhile to test the approach on more common 
and reliable modalities. They were able to produce 40-bit keys, which is a weaker level of entropy compared to 
those in later template protection methods. They recommended padding the encoded template using information 

                                                 
75 The Electronic Signatures in Global and National Commerce Act, enacted by the U.S. Congress in June 2000. 
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from the template or user supplied information (e.g. a password) prior to hashing it with the encryption algorithm. 
Doing so would fortify the key against brute force attacks and further guarantee uniqueness among keys. 
 
Implications 
 
The researchers mentioned the importance of all-bit-correctness when producing hash digests of biometric 
templates. Their solution to this was to define a set of parameters with a limited number of discrete values 
determined by the features of the acquired image. For example, pen pressure might be categorized in one of three 
classes (light, medium, strong) and that value would concatenate with those of other parameters. Thus fuzziness 
would be eliminated altogether. To be effective, a large amount of parameters would be necessary to adequately 
control intraclass variance. Though this method is not replicated in later studies, its computational simplicity may 
tempt one to refine it until it attains acceptably low rates of error. 
 
Vielhauer et al. (2002) 
 
Vielhauer et al. designed a method for generating hash values from handwritten signatures. Their method produces a 
vector of 24 feature parameters. No reference samples were stored in the hashed template, an advantage that 
contrasted with variations of fuzzy cryptosystems which stored helper data. 
 
Method 
 
During enrollment, the user produces a signature on an acquisition device like a pen-based PDA. The coordinate 

signals xt,yt and the pen-up and pen-down signals  are collected from the supplied signature image. These 
three basic data form the basis of 24 feature parameters including, for example, the number of continuous pen-down 
sequences or the duration of the complete writing process in milliseconds. The values of these parameters are stored 
in an interval matrix IM such that 
 

 
 
where ∆Ii is the interval length of an interval [ILow …IHigh ] and Ùi is the interval offset. ∆Ii is computed from initial 
intervals, such that 
 

 
 
Where ti is a tolerance factor derived from empirical tests of authentic writing samples against the above intervals 
and averaging the standard deviations. . ∆Ii and Ùi can be expressed as 
 
∆Ii=IHigh +0.5-(ILow -0.5)=IHigh -ILow +1 
 

 
 
and 
 

Ùi=ILow mod(∆Ii) 
 

The hash values are calculated by mapping each feature parameter against IM . The hash function for each feature 
parameter  is written to a hash vector as such that 
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Performance 
 
The researchers achieved an average of 7.05% FRR at 0% FAR. These are impressive results compared to other 
methods reviewed that focus on the signature modality. The parametric approach to this method is similar to that of 
Hao et al. (2002); like theirs, this method is less complex than many of the other methods reviewed in this report and 
may be less expensive for systems to compute. The combined results of Hao et al. and Vielhauer et al. suggest that 
generating keys under the constraint of parameters could yield high security and robustness while maintaining 
computational simplicity. 
 
Costanzo (2004) 
 
Costanzo proposed a method by which biometric data was used to generate cryptographic keys suitable for use with 
symmetric cipher algorithms. He cited shortcomings in previous attempts,76 claiming that their methods required 
prealigned inputs and expensive, complex computations. He intended for his method to surmount these 
shortcomings while producing keys that were highly entropic, unique, and stable. 
 
Method 
 
Costanzo’s method adhered to the concept of adaptive boosting, wherein the aggregation of small classifiers is 
assumed to produce a more accurate classification than any single classifier. Classifiers and parameters are 
measured upon acquiring the biometric image. For example, a fingerprint image could be classified as having an 
arch with a parameterized ridge count between minutiae. This data would be used to generate a cryptographic key. 
The author did not go into detail on how to execute this process. Instead he proposed an idea wherein the greater the 
number of classifiers and parameters defined, the greater the number of total number of possible combinations (and 
thus entropy) of the key. If an algorithm is told to classify an input according to three distinguishing characteristics 
with two possible values each, the combination size would be six. This would yield 5,423,611,200 possible 
combinations on a 128-bit key, as calculated by 
 

 
 
where n represents combination size and k represents key length. 
 
Implications 
 
The goal of this paper was to propose a simpler method for generating high entropy keys from biometric data. Its 
main contribution was the concept of encrypting a combination of parameter values derived from the input image, 
rather than encrypting the input image itself. Theoretically it would be much easier to replicate the exact same 
pattern of parameter values upon authentication than the exact same biometric image. Entropy would be guaranteed 
by defining more parameters, which yields more parameter combinations; while verification performance would be 
guaranteed by defining parameters easy to replicate despite fuzziness (e.g. whether a fingerprint is an arch or a 
whirl, rather than the exact coordinates of the minutiae). 
 
Chen et al. (2009) 
 
Chen et al. produced cryptographic keys from pseudo-signatures.77 Such patterns are inherently cancelable, but they 
are easily susceptible to shoulder surfing in which someone observes the user during authentication and commits the 
pattern to memory. With this in mind, the researchers chose to extract behavioral data such as velocity and pressure 
in addition to the actual pattern during enrollment and authentication. 

                                                 
76  
 
Monrose et al. (2001b), Clancy et al. (2003), Linnartz and Tuyls (2003). 
77 Pseudo-signatures are hand-drawn patterns used in the “Draw-a-Secret” graphical password scheme. They have 
been used to authenticate users in touchscreen smartphones. 
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Method 
 
The proposed method reportedly follows that of Vielhauer et al. (2002) which processed a feature vector with an 
error correction algorithm to produce a cryptographic key. During enrollment, the user draws the same pseudo-
signature  times to train the system. The training process assumes the following preliminaries: 

fi,j is the feature value of the j"th" feature in the i"th" training sample; 
lj'=min(fi,j); 
rj'=max(fi,j); 
∆Ij=rj'-lj'+1; 
lj=lj'-∆Ij×åj; and 
rj=rj'-∆Ij×åj where å is the tolerance value for the corresponding feature in a tolerance table. 

 
The system constructs a feature vector from the training samples into an n×2 matrix [(l1,r1 ),(l2,r2 )…(ln,rn)]. A hash 
value of the feature vector is computed such that 
 

 
 
where i is the index of the training sample, and Ùj=lj mod (∆Ij) is auxiliary information representing the offset of the 
hashed feature. The feature space is divided into intervals along each dimension, allowing the system to map two 
inputs of negligible variation into the same output. The final output is a cryptographic key that is stored on the 
dataset. During authentication, the user draws a pseudo-signature to be compared against one or more secured 
templates in the dataset. The query is converted into a key using the same hash function employed during 
enrollment. If the difference in bits between the query and stored hash falls within a predefined threshold, the system 
returns a match and the user is authenticated. 
 
Performance 
 
The researchers tested the proposed method against offline, online, and trained attack models. They achieved 1% 
EER in the offline and trained attack models, and 4% EER in the online attack model. The researchers adapted their 
test methodology from a previous study which found that users drew more complex patterns when doing so on a 
background, rather than a blank canvas. With this in mind, they generate randomly patterned backgrounds on the 
canvas. The backgrounds do not actually affect the drawing; they merely encourage the user to draw more complex 
patterns. More complex patterns results in higher entropy templates. 
 
4.9 Random Projection 
 
Random projection is a means of reducing the dimensionality of a set of points while nearly preserving the distances 
between the points. The theory behind random projections stems from the Johnson-Lindenstrauss lemma, which 

states that any set of k points in an n-dimensional Euclidian space can be embedded into an -
dimensional space such that the pairwise distance of any two points is maintained to a reasonable extent.78 Some 
template protection methods use random projection as a means to randomly map minutiae coordinates while 
preserving semantic meaning in final set. 
 
4.9.1 Vulnerabilities 
 
The irreversibility of a random projection matrix can be compromised if an attack can identify linkages among 
protected templates. This linkage can happen either where different protected templates are generated for different 
applications or where they are updated at different times. The attacker can exploit the leaked information either to 
reverse the genuine biometric feature vector or to filter out unlikely candidates for the genuine feature vector.79 

                                                 
78 Johnson and Lindenstrauss, “Extension of Lipschizt Mapping into a Hilbert Space,” 189-206. 
79 Yang et al. (2010): 2. 
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Yang et al. (2010) mitigated this vulnerability by producing dynamic, nonlinear random projection matrices that 
make it difficult to launch inversion attacks in the event of a stolen token scenario. Wang and Plataniotis (2010) 
describe vulnerabilities that facilitate correlation attacks, cross matching attacks, and known projection attacks and 
means. 80 
 
4.9.2 Performance 
 
Random projection methods have performed well in empirical tests. Chikkerur et al. (2008) and Yang et al. (2010) 
both exceeded the target of 1% FRR and 0.1% FAR. 
 
4.9.3 Articles 
 
Teoh et al. (2007) 
 
Teoh and Yuang extended the BioHash method first proposed by Teoh et al. (2007). The original method was 
observed to distinguish genuine templates from imposters very poorly in the event that an imposter wielded a stolen 
token. They hypothesized that, in a stolen-token scenario, system performance would improve when using 
multispace random projections. 
 
Method 
 
The user submits a face image during enrollment. Facial features are extracted from the image and transformed into 
a feature vector x.81 The vector is mapped onto a random projection vector  such that 
 

 
 
where R is a random matrix m×n and n is the length of the biometric feature. The templates can be cancelled by 
issuing a new tokenized random number to the user. 
 
Performance 
 
The researchers tested the proposed method against 600 face images under normal conditions, a stolen-token attack 
scenario, and a stolen-biometric attack scenario. They also tested the methodology using two different feature 
extractors: EigenFace and Spectraface. Each test compared 718,800 imposter attempts and 3,600 genuine attempts. 
Under the stolen-token scenario, they achieved 31.23% EER with EigenFace as the feature extractor and 18.10% 
EER with Spectraface as the feature extractor. 
 
 
 
 
Chikkerur et al. (2008) 
 
Chikkerur et al. attempted to produce cancelable fingerprint templates without requiring prealignment of the 
minutiae points. Their goal was to build a more robust system that could withstand image registration errors, without 
compromising security in the template design. They criticized the inability of biometric cryptosystems82 to 
withstand intraclass variation adequately. They determined that geometric registration may not be required for the 
construction of cancelable templates, which they observed to be commonly used in fingerprint recognition. Instead 
they used purely local measurements. 
 
Method 

                                                 
80 Wang and Plataniotis, 2010, “An Analysis of Random Projection for Changeable and Privacy-Preserving Biometric 
Verification,” 1287. 
81 The feature extraction process is not investigated in this article. 
82 See, e.g., Monrose et al. 2001; Teoh et al. 2004. 
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For each transaction the user presents a fingerprint image to an acquisition device. An image patch is extracted from 
each minutiae point rather than its coordinates. The patches were aligned with the angle of the minutiae to ensure 
accurate matching performance. To calculate the similarity among the patches, a normalized dot product function 
computes the distance d between a query template x and a stored template  such that 
 

 
 
Ultimately the expansion coefficients, derived from a Gabor basis expansion of the patches, form a unique signature 
to be stored in the dataset. The noninvertible, cancelable transform T is executed such that 
 

 
 

where  is a user specific projection matrix. 
 
During authentication, the user presents a fingerprint image. A signature is generated from the features in the same 
way that is done during enrollment. A similarity score  between the query signature  and a stored signature 

 is computed such that 
 

 
 
where T(i) is the index of the minutiae in set {yi} to that in set {xi}. 
 
Performance 
 
Having tested the proposed method against 17,578 imposter comparisons and 188 genuine comparisons, the 
researchers achieved as low as 0% FRR at 0.1% FAR when the cancelable transform was employed. False 
acceptance rate was much higher when the cancelable transform was not employed. 
 
Al-Assam et al. (2009) 
 
Al-Assam et al. designed a method for producing cancelable biometric templates using noninvertible, random 
projection transforms, an approach also attempted by Teoh et al. (2004). They claimed that the method could match 
or exceed the verification performance of existing methods using random projections. Their explicit goals were to 
create templates that were resistant to cross matching, highly entropic and noninvertible, cancelable, and negligibly 
detrimental to verification performance. 

Method 
 
Random projection maps data from orthonomal matrices to other spaces and preserves the distances among the data 
points. The researchers observed previous random projection methods to have three steps: (1) to generate m 
pseudorandom vectors from a user key or token; (2) to apply the Gram-Schmidt algorithm83 to convert the vectors 
into orthonomal matrices, which have the same dimensionality as the original template feature n; and (3) to 
transform the original template feature x to a secure domain using a matrix product y=Ax. They claimed that small 
orthonomal matrices could be generated without using the Gram-Schmitd algorithm.  
 
Their modified approach, which they reported to be computationally more efficient, had just two steps. First they 
selected a set of n random values {�1, �2… �n} in the range [0…2�] according to a user key or token to create an 
orthonomal matrix A. Then they transform the original biometric template from a secure domain y=Ax. They noted 

                                                 
83 See pp. 3-4 for an overview of the Gram-Schmitd algorithm. 



 

DRDC CSS CR 2011-29 
 

that, in practice, they would apply a secret permutation such that y=Ax+b where b is a blinding vector. 
 
Performance 
 
The researchers tested the proposed method against two datasets: one with 165 face images, the other with 80 face 
images. They used wavelet decomposition to achieve face recognition and nearest neighbor classification to achieve 
matching. When using no transformation, they achieved 21% EER and 17% EER from the respective datasets. 
When using their proposed method, they achieved 2% EER and 0.2% EER respectively. This method could 
potentially match the verification performance of preceding methods using random projection. 
 
Ouda et al. (2010) 
 
Ouda et al. recognized that even though BioHash84 and other token-based methods for cancelable biometrics yielded 
the most accurate match rates, their resistance to stolen-token attacks was weak. Therefore they proposed a method 
of producing cancelable templates in such a way that did not require tokens but could still compete with token-based 
methods in terms of matching performance. They proposed a single-factor authentication scheme called 
BioEncoding. 
 
Method  
 
For each transaction, the user presents an iris image from which its features are extracted to form an IrisCode. To 
reduce noise, consistent bits85 are selected from the extracted template. To this end they first aligned the query 
template with the stored template, which the researchers achieved by rotating the query image by r-degree intervals 
until the features reach an angle that minimizes the Hamming distance. Then they masked the bits that were likely to 
be the same value at similar locations in both templates, omitting those with high variability. The consistent bits 
were stored in a vector C. The researchers claimed that consistent bit extraction was an important step in optimizing 
verification performance. 
 
The final template, called a BioCode, is generated from the consistent bits and scrambled into a compact string. 86 
Prior to enrolling users the server stores a random seed that generates a pseudorandom sequence of length 2m that is 
used to randomly map the consistent bits. Cancelling a BioCode is simply a matter of changing the value of this 
random seed. And while the researchers correctly assume that one random seed would suffice for all users in the 
system, it would be preferable for each user to have a unique random seed so that one could cancel and reenroll her 
template without requiring all other users to reenroll their templates. For each transaction, the consistent bits of the 
feature vector are first grouped into n address words of m length. Each address word in C is mapped to the bit value 
in S where the position is addressed by the value in that word. An example is given where an address word 111101, 
which is equal to the decimal 61, is mapped to 0 or 1 depending on whether the value at position 61 in the 
pseudorandom sequence is 0 or 1. To authenticate a user, the entire process is repeated and the query BioCode is 
compared against one or more stored BioCodes. 
 
 
Performance 
 
The researchers tested the proposed method and the BioHash method against 756 iris images from the CASIA 
dataset. They found that, on average, one in five bits were perfectly consistent among all IrisCodes. After 566,244 
imposter comparisons and 756 genuine comparisons, they found that BioCodes produced 1.3-2.1% EER while 
BioHash produced 2.2-5.8% EER. But the proposed method has some scalability issues. The more trivial issue is the 
need to submit multiple images during enrollment in order to train the system. The greater issue is that the random 
seed is shared among all users enrolled in the application. To cancel one user requires reenrolling all users, which 
would be impractical for to execute in large scale applications. 
 

                                                 
84 See Teoh et al. (2004). 
85 “Reliable” or “consistent” bits have a high probability of having the same value in the same areas among multiple 
images of the same iris. 
86 See pp. 6-7 for diagrams of BioCode generation. 
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Yang et al. (2010) 
 

Yang et al. designed a new approach to 
random projection for biometric 
template protection in reaction to the 
security concerns of the stolen-token 
scenario as explained by Teoh et al. 
(2007). The concerning issues, the 
researchers noted, was that the matrix 
was both public and linear. The 
proposed method dynamically 
constructs a nonlinear random 
projection matrix instead of a fixed 
random projection matrix, increasing 
the computation complexity of reverse 
engineering a secured biometric 
template. The proposed method 
performed very well in empirical tests. 
This research was funded under Project 
TURBINE (ICT-2007-216339). 
 
 
Method 

Figure 30 illustrates a high level 
overview of the proposed system. To 
dynamically construct a random 
projection matrix, q random vector slots 

are set to be public with each slot i containing L p-dimensional random vectors. From each slot, one of the L random 
vectors is selected for projecting the biometric feature vector b to obtain one dimension of the projected result vector 
v. The selection of ri,j will be decided by an index idi is which is the jth dimension of an index vector 
ID=(id1,id2…idq) such that with all the public slots there is no clue to the attacker which random vector ri,j from the 
slot i was selected to as ri,idi to project b into the ith dimension of v: 
 

vi=(ri,idi) b 
 
An index vector generator function can be designed to take the biometric feature vector b as the input and output the 
q-dimentional integer index vector ID. This new mechanism makes the creation of the projection matrix dependent 
on the to-be-projected biometric feature vector. The researchers presented two amplitude quantization functions: one 
to be applied to the biometric feature vector, the other to be applied to a fixed-matrix based random projection result 
vector.87 
 
 
 
Performance 
 
The researchers tested the proposed method against 800 fingerprint images in the stolen token scenario. They 
achieved 0.6% FRR at 0.1% FRR meeting at 0.57% EER where the length of the secure binary string was 144 bits. 
These are among the most promising results of the tests reviewed in this report. These results were achieved when 
the input images were not manually prealigned. 
 

                                                 
87 See p.3 for details on the amplitude quantization functions. 

 
Figure 30: Schematic overview of the anonymous biometric  
access control system. 
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5 Iris Recognition Assessments and Performance Evaluations  

 

5.1 Background 
 
Iris recognition technology is considered a candidate for use in biometric PETs due to the richness and stability of 
data in iris images. To gauge the suitability of this modality for use in PETs, Indiana University-Purdue University 
Indianapolis (IUPUI) analyzed previous studies of iris recognition performance and conducted a new study of iris 
recognition performance. References for this section are marked in brackets and are listed in Annex G.  
 
5.2 Assessment of Iris Recognition through Variable-Quality Iris Datasets 
 
5.2.1  Test Iris Image Datasets 
 
Iris image quality is likely to be a determinant of the viability of such use. To this end, IUPUI evaluated the ability 
of a commercial iris recognition algorithm to process seven iris image datasets of varying quality. Representative 
images from each dataset are shown in Figure 31. 
 

Dataset Name Image Format & Volume Quality / Capture Notes 

Iris Challenge Evaluation 
(ICE) 

640x480 , 2953 images Controlled environment, cooperative subjects, illuminated in 
the near infra-red (NIR) range 

Chinese Academy of 
Sciences (CASIA) 2.0 

640x480 , 2400 images NIR 

CASIA 3.0 Set 1 320x280 , 2639 images NIR; captured in two sessions, at least one month interval 

CASIA 3.0 Set 2 640x480 , 16213 images NIR; captured in one session 

CASIA 3.0 Set 3 640x480 , 3183 images NIR; captured in one session 

West Virginia University 640x480 , 1852 images NIR; noisy, heterogeneous data, with obstructions, 
inconsistent illumination, and out-of-focused, off-angle irises 

UBIRIS 800x600 , 1877 images Color images acquired in visible wavelengths; Two distinct 
sessions, images are predominately frontal gaze,  

Multimodal Biometric 
Grand Challenge (MBGC) 

2048x2048 , 148 videos, 1 
second duration 

NIR; focal length of IOM is 2~3 feet, images acquired while 
subjects walked toward the camera, primarily frontal view, 
human subjects are instructed to look at iris cameras 

IUPUI multi-wavelength 1280x1024 , 352 videos NIR; obtained from both eyes on two separate occasions, time 
period between each data acquisition is at least one week, only 
used green wavelength to test 

IUPUI Remote 1280x1024 , 731 videos, 30 
fps 

NIR; average iris radius was 95 pixels, data was acquired in 
two sessions, at least one week between sessions, 6 videos per 
iris, variety of positions and situations 

 
Iris Challenge Evaluation (ICE) images are 640x480 resolution and illuminated in the near infra-red (NIR) range, 
acquired using the LG IrisAccess 2200. The dataset contains 2953 images (1426 left eyes and 1527 right eyes). 
Acquisition was performed in a controlled environment with cooperative subjects.  
 
CASIA iris datasets were created by the Institute of Automation from the Chinese Academy of Sciences (CASIA). 
CASIA ver. 2.0 includes 2400 images (640x480) of 60 eyes. CASIA 3.0 is comprised of 3 different sets. Set 1 
contains 249 subjects, 385 classes, and 2639 images (320x280). Most images were captured in two sessions, with at 
least one month interval. Set 2 contains 411 subjects, 819 classes, and 16213 images (640x480). Set 3 contains 200 
subjects, 400 classes, and 3183 images (640x480) from 100 pairs of twins. Both second and third sets are one 
session.  
 
The WVU Dataset, consisting of 1852 images (640x480) of 380 eyes, was developed by the West Virginia 
University. WVU images were captured with few environmental constraints, resulting in noisy, heterogeneous data, 
with obstructions, inconsistent illumination, and out-of-focused, off-angle irises.  
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The UBIRIS dataset images are color images acquired in visible wavelengths, in comparison to most iris datasets 
which are acquired using NIR. The dataset consists of 1877 images (800x600) composed of 241 users in two distinct 
sessions. The images are predominately frontal gaze.  
 
The Multimodal Biometric Grand Challenge (MBGC) NIR video dataset was acquired using Sarnoff‘s IOM 
system. It consists of 148 one-second videos (2048x2048) from 114 subjects. The focal length of IOM is about 2~3 
feet. Images are acquired while subjects walk toward the camera. These video images are primarily frontal looking 
iris images and the human subjects are instructed to look at the iris cameras.  
The IUPUI multi-wavelength dataset was acquired under eight different wavelengths illumination including Purple 
(420 nm), Blue (470 nm), Green (525 nm), Yellow (590 nm), Orange (610 nm), Red (630 nm), Deep Red (660 nm), 
and Infra-Red (820nm) at a distance of one foot. In each wavelength, there are total 352 images of 44 subjects 
whose eye colors included blue, dark brown, light brown, green, and hazel. For each human subject, we obtained the 
image videos (1280x1024) from both eyes on two separate occasions. The time period between each data acquisition 
is at least one week. In this experiment we only used the Green wavelength to test. 
 
The IUPUI remote non-cooperative dataset included, for each eye at each session, 6 iris videos.  
 
 The first video was frontal and the eye was still.  
 The second and third videos were captured while subjects read sentences from wall-mounted posters (placed 15 

feet away from the subject, about 5 feet behind the camera) 
 The fourth and fifth videos were acquired while the subjects were searching the wall to calculate the total 

number of certain symbols 
 The sixth video was acquired while subjects did simple numerical calculations with the numbers placed on the 

ceiling of the room.  
 
Each 1280X1024 video was captured at 30 frames per second. The average iris radius of the video images in the 
dataset was approximately 95 pixels. Each subject’s data was acquired in two sessions, with at least one week 
between sessions. The dataset consists of 31 subjects, 62 irises, 731 iris video sequences, and 205,538 video frames.  



 

DRDC CSS CR 2011-29 
 

 
5.2.2 Performance Evaluation Metrics  
 
Metrics used to evaluate performance were false rejection rate (FRR), false acceptance rate (FAR), and failure to 
process rate (FTPR). These statistics are based on the following matching outcomes [62]. True Negatives (TN) are 
different-iris pairs correctly identified as being from different eyes. False Positives (FP) are different-iris pairs 
incorrectly identified as the same eye. False Negatives (FN) are same-iris pairs incorrectly identified as not being the 
same iris. True Positives (TP) are same-iris pairs identified as the same iris.  
 
FRR is calculated as:   
 

. (2-1) 
 
FAR is calculated as:  
 

. (2-2) 
 
FTPR is calculated as:     
 

. (2-3) 
 
5.2.3 Results and Analysis 
 
Summary quality results are shown in Figure 32. Images that failed to process were given a score of 0. 
 

Figure 31: Representative Iris Images  
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Figure 32: Quality score of all datasets 
 
 
 
Summary processing and matching results are shown in Figure 33. 
 

Dataset # of Images # of Eyes  FTPR FRR* FAR* 

ICERIGHT 1528 120 0% 5.47% 3.05x10-4% 

ICELEFT 1425 124 0.07% 3.91% 1.49x10-4% 

CASIA 2.0 1200 60 2.75% 20.63% 0 

CASIA 3.0 3183 400 2.8% 23.05% 5.94x10-5% 

WVULEFT 1562 190 1.22% 15.16% 0 

WVURIGHT 1537 234 0.85% 13.3% 1.28x10-4% 

UBIRIS (part 1) 1214 241 0.58% 12.5% 5.45x10-4% 

MBGC 1072 285 4.57% 38.28%** 1.75x10-4% 

IUPUI MULTIWAVE 886 88 19.07% 41.69%*** 4.67x10-3% 

IUPUI Remote  731 videos, 205,538 images 62 NA NA NA 
Figure 33: Summary of Iris Recognition Performance for Test Datasets 
 
Results are shown in chart form in Figure 34 and Figure 35.  
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Figure 34: Comparative Failure to Process Rates  
 

 
Figure 35: Comparative Accuracy Rates 
 
FRR and FAR were based on a Hamming distance of 0.33 as threshold (the default setting). By comparison, in [1] 
Daugman suggested that a Hamming distance of 0.26 would result in a zero FAR in a large dataset. A Hamming 
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distance of 0.26 would have a higher FRR. 
 
The resolution of the iris patterns in the MBGC dataset are about 150 pixels across the iris, which is much lower 
than the expected working environment of the commercialized system. This accounts, in whole or part, for the FRR 
(38.28%) for this dataset. Because iris patterns in dark brown eyes are hard to be extracted in visible wavelengths, 
the FRR in IUPUI dataset is high (41.69%). 
 
The ICE dataset [63] has high accuracy and quality. Its images were acquired using a commercial NIR iris camera 
under well controlled environment with good illumination. The overall recognition accuracy for this dataset is high 
with very low FRR and FTPR. A small number of bad quality images with high occlusion were falsely rejected. In 
addition, one off-angle image in the ICE dataset has greatly affected the accuracy as Daugman has analyzed in [25]. 
There is a very small FAR. The lowest Hamming distance of false accepted pair is 0.3083. 
 
The CASIA datasets [64] had relatively low quality. Most human subjects for this dataset are Asians whose eyes 
sometimes are small and eye lashes often occludes iris patterns. The FRR is relatively high, as many images have 
been rejected due to heavy occlusion. The smallest false acceptance Hamming distance for this dataset is 0.3218. 
 
The WVU dataset’s [65] illumination is less consistent than the system expects, dramatically affecting its accuracy. 
Some images even have iris completely covered in a shadow. 0.3173 is the smallest false acceptance Hamming 
distance for this dataset. 
 
UBIRIS [39] is a color iris dataset. Although the commercial system is designed to work on NIR images, it 
performed surprisingly well in this dataset. Some images are falsely rejected because the irises are too dark to be 
viewed in the visible wavelengths. In addition, some images are very blurry. 0.3149 is the smallest false acceptance 
hamming distance in this dataset. 
 
MBGC dataset [66] didn’t perform well, as the commercial iris recognition algorithm used in the evaluation is 
designed to perform iris recognition using NIR face images. Extracted irises were approximately 150 pixels in 
diameter, much lower than the expected working environment of the commercialized system. In addition, some 
irises are not fully contained in the image, and one image shown in Figure 31 is even partially covered by eye 
glasses. This explains the dataset’s high FRR and FTPR. It is reported in Matey’s paper [5], that with proper 
segmentation, Daugman’s recognition method can work very well in MBGC dataset. IOM systems are capable of 
adequate performance using MBGC-style images.  
 
The IUPUI multispectral dataset has very high resolution images and had to be downsized to work in the system. 
The downsizing process could distort the iris patterns, which could account for the high FRR. Since we used the 
images from green, yellow, and NIR wavelengths, some dark brown iris images are too dark to be used for 
recognition, potentially contributing to high FRR. Even though there are several false matches, 0.3151 is the 
smallest false acceptance Hamming distance in this dataset. As anticipated, the test system was unable to process the 
IUPUI Remote dataset due to the low resolution and non-frontal capture of its images. 
 
Cross-matching of iris images from different datasets did not result in any false matches.  
 
The following conclusions can be drawn from this multi-dataset evaluation of a commercial iris recognition system: 
 
 Processing and matching are very fast. The system can perform iris recognition in 17.8ms (including 

segmentation, feature extraction and 1:1 matching).  
 It has very low FAR when using a decision threshold (Hamming Distance) of 0.33. As Daugman has discussed 

in [1], for large-scale matching, the recommended HD is 0.26. Such a threshold would have resulted in a 0.00% 
FAR and higher FRR for all datasets. 

 The system is capable of processing visible wavelength images, assuming that iris patterns are good enough for 
recognition.  

 The system can work reasonably well with regular pupil dilation.  
 The system is designed to reject poor quality images to avoid possible false acceptance.  
Areas for improvement include the following: 
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 The system is unable to process non-cooperative, off-angle iris images.  
 Since the commercialized system is designed for images acquired from a specific, paired acquisition system, 

preferences in iris image resolution and illumination are present. Usually, the commercialized system can work 
best with iris images with resolution about 200 pixels across the iris. However, for lower resolution or higher 
resolution images, if resolution can be adjusted properly without deforming iris patterns, the system can also 
perform accurate iris recognition.  

 Recognition accuracy can be affected dramatically by poor illumination condition or poor contrast. 
 Recognition accuracy can be affected dramatically by motion blur.  
 The commercialized system would not work with dark color iris images in visible wavelength due to the lack of 

recognizable iris patterns.  
 Hamming Distances are not necessarily symmetric. When used for enrollment, lower-quality images resulted in 

higher (worse) HDs.  
 

5.3 Impact of Compression on Iris Recognition  
 
5.3.1 Background  
 
The goal in the section is to study how the state-of-the art iris recognition system performs when the image of the 
iris has been compressed. There are two topics in iris image compression: the consequences of iris pattern 
compression to the iris recognition accuracy and how to achieve the highest possible compression without 
compromising iris recognition accuracy. In this section, we first study how iris pattern compression would affect iris 
recognition accuracy and how to measure image quality. Then we examined how to achieve high compression rate 
which is possible by reserving as much information as possible in the iris pattern area.  
 
Data compression is beginning to play a part in the use of iris recognition systems. In the field applications using 
handheld iris recognition devices often use wireless communication to connect to the central server for identification 
and verification. Law enforcement agencies, such as the Border Patrol, the Coast Guard, and the Armed Forces, are 
using portable wireless iris recognition devices. While it will be ideal to have wide bandwidth for transmission in 
real-life applications, it often needs to transmit captured images or templates over a narrow-bandwidth 
communication channel. In this case, minimizing the amount of data to transmit (which is possible through 
compression) minimizes the time to transmit, and saves energy. There are other iris applications that require a full-
resolution iris image to be carried on a smart card, but require a small fixed data storage size. In some cases (such as 
surveillance applications), the images acquired have already been compressed. If the image has been compressed it 
is important to know how much it has been compressed and to what degree the compression will affect the 
recognition accuracy. 
 
5.3.2 Compression and Iris Recognition Accuracy  
 
Ives et. al. [67] and Du et. al [46] studied how compression in iris images would affect compression accuracy. JPEG 
2000 was used on the ICE dataset [68]. JPEG 2000 is a state of the art compression method; it uses a discrete 
wavelet transform to compress an image. JPEG 2000 is published by the Joint Photographic Experts Group. For this 
paper the default parameters and options of the JasPer implantation of JPEG 2000 were used [69]. In this way the 
compression rate was uniform across the entire image and no special priority was given to the iris area. 
 

Figure 36: Sample image at various levels of compression [67].. 
 

Original (A) 25:1 (B) 50:1 (C) 75:1 (D) 100:1 (E)
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Figure 36 shows the original image and 4 different compression rates. As the compression is increased some of the 
finer details get lost and artificial patterns get introduced into the image. Both of these factors will affect image 
quality and recognition accuracy. 
  

Compared Databases Minimum 
HD 

Mean 
HD 

Maximum 
HD 

Original versus Original 0.0025 0.1535 0.4795 
Original versus 25:1 0.0000 0.1514 0.4818 
Original versus 50:1 0.0000 0.1685 0.4705 
Original versus 75:1 0.0008 0.1912 0.4742 
Original versus 100:1 0.0035 0.2109 0.4802 

 
Figure 37: Summary of Iris Recognition Performance for Test Datasets 
 
Figure 37 shows the genuine match results at various levels of compression. Lower HD means the images are a 
better genuine match. The data consists of 2953 images, 1425 were right eyes of 124 different people and 1528 were 
left eyes from 120 different people. There is a slight improvement in Hamming distance in the min and the max for 
the first three levels of compression and there is an improvement for the first level of compression for the mean. It is 
expected that the Hamming distance would increase as the compression increased because data is lost and the 
genuine matches become less similar. The decrease in Hamming distance is probably because the compression 
removed some noise and/or in the small data set an artificial patterns appeared that was unique for a particular iris.  
. 

 
Figure 38: Iris Recognition Cross-Matching EER 
 
Above are cross-matching results Figure 38 is equal error rate, in this table the EER increases as the compression 
increase. This shows that the compression decreases the accuracy.  
 

 
Figure 39: Iris Recognition FRR at FAR= 0.001. 
 
Figure 39 is false rejection rate at false acceptance rate=0.001, this table shows a decrease in FRR every time that 

 

    FRR at FAR = 0.001
    Original  Cr25   Cr50 Cr75 Cr100

Original  0.022   0.024   0.028 0.042 0.057
Cr25  0.024   0.030   0.035 0.049 0.069
Cr50  0.028   0.035   0.044 0.057 0.075
Cr75  0.042   0.049   0.057 0.079 0.088
Cr100  0.057   0.069   0.075 0.088 0.125

  

    EER (%)
    Original  Cr25   Cr50 Cr75 Cr100

Original  1.350   1.470   1.540 2.020 2.500
Cr25   1.470   1.730   1.770 2.280 2.800
Cr50   1.540   1.770   2.010 2.420 3.000
Cr75   2.020   2.280   2.420 3.010 3.350

Cr100   2.500   2.800   3.000 3.350 4.450
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compression is increased. 
 

FRR at FAR = 0.0001 
  Original Cr25 Cr50 Cr75 Cr100 

Original 0.036 0.043 0.060 0.087 0.106 
Cr25 0.043 0.070 0.088 0.126 0.149
Cr50 0.060 0.088 0.105 0.134 0.153 
Cr75 0.087 0.126 0.134 0.177 0.170 
Cr100 0.106 0.149 0.153 0.170 0.223 

 
Figure 40: Iris Recognition FRR at FAR = 0.0001. 
 
Figure 40 is false rejection rate at false acceptance at 0.0001. This table shows a decrease in FRR as compression 
increase in all but one instance. The 100:1 compression image compared to the 75:1 image preformed worst than the 
75:1 compared to the 75:1. The FRR is very close 0.177 for the 75:1 to 75:1 and 0.170 for the 100:1 to 75:1. This 
result is likely a statistical anomaly because it was very small and it only occurred in this one test. These tables also 
show that mean HD shouldn’t be the only measure used to evaluate the quality of an image because these tables 
show that accuracy is greatly impacted by compression. 
 
5.3.3 Compression and Iris Image Quality  
 
Poor quality image can affect recognition accuracy because they do not have enough feature information. In [70], we 
proposed the feature correlation evaluation based method to measure image quality. By using information as a 
measure, it can not only describe the randomness of the features, but also generate high-order statistics of the iris 
image based on its features [70]. For compressed images, the artificial patterns introduced by the compression 
generally would be more correlated than the natural iris patterns. That means there would be less difference between 
adjacent artificial patterns. Using information distance as a measure, we can measure the feature quality. The 
combination of occlusion and dilation determines the amount of iris patterns available in matching, and is also 
considered in the proposed quality measure.  
 
Figure 41 shows the feature correlation measure score for each row of the eye in Figure 36. A is the normal image, 
B is the 25:1 compression, C is 50:1 compression, D is 75:1 compression, E is 100:1 compression. It shows that the 
FCM decreases as the compression increases. This shows that feature information is reduced with increasing of 
compression, which results in lower image quality. The quality scores for (A) to (E) are 0.9975, 0.3784, 0.2660, 
0.2539 and 0.2008 respectively. 
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Figure 41: Row-by-row feature correlation 
 
Figure 42 shows the mean quality score decreases with increasing of compression rate. The rate of decrease is 
greater at lower levels of compression. This means that the rate of information lose is greatest for the first stages of 
compression. 
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Figure 42: Mean quality score at various compression levels 
 
 
5.3.4 Region of Interest Compression  
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A regular image compression scheme could affect iris recognition accuracy and iris image quality significantly. In 
[71], Daugman designed a Region of Interest based iris compression method to achieve better compression rate. 
Figure 43 shows the diagram of Daugma’s compression approach. It first detects the iris area and crop the images to 
reduce size. Next the eyelid and eyelashes are replaced with a gray area to take less space when the image is 
compressed. Finally the image is compressed using Region of Interest (ROI) approach. See Figure 44 for examples. 
 

 

 
Figure 44: From left: JPEG compressed, Isolated JPEG, and JPEG200071  
 
For ROI-based approach, there JPEG and JPEG 2000. JPEG 2000 is designed to allow for a region of interest to be 
assigned and in that way the JPEG 2000 compresses the image in such a way that it preserves more of the data in the 
ROI. Figure 45 shows the comparison of the Hamming distance using ICE dataset left eyes (1425 images from 124 
individuals). The total compression is calculated by dividing the original image size 640x480 or 307.2 KB by the 
average image size after compression using Table 1 in Ref. [71]. The compression parameter QF means quality 
factor CF means compression factor. HD means Hamming Distance. The greater increment of Hamming Distance 
means more reduction in recognition accuracy.  
 
Figure 46 illustrates the compression rate vs hamming distance increase using Table 1 from[71]. These results are 
similar to the findings in [67] that show as compression increases the Hamming distance increases. Using cropping, 
RIO and JPEG 2000, the system can achieve 153.6:1 with only increasing the Hamming distance to 0.027. And, it 
has been shown it is possible to compress an iris image 180:1 with an increase in hamming distance of only 0.035. 
An increase in Hamming distance of 0.02 to 0.03 is negligible[71] and this show that it possible to compress an 
image greatly but still preserve the iris information if the image is compressed after the iris is detected and 
segmented. On the other hand if the image is compressed before segmentation a 100:1 compression ratio results in a 
greater increase in hamming distance. The increase in hamming distance is 0.057 between the original to original 
and the 100:1 to original. This shows it is possible to store an iris image in a small format if it can be segmented 
first, but using an iris image that comes from an extremely compressed source is more difficult, because the 
background and iris are given the same priority when image was compressed.  
 

Iris 
Image

Segmentation
ROI Based 

Compression
Compressed 

Image
Detection

 

 
Figure 43: The diagram of Daugman's compression approach .. 

 Image 
 Cropping
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Figure 45: Hamming Distances as a Function of Compression 
 

 

Figure 46: Impact of Compression of Iris Recognition Accuracy 
 
5.4 Iris Recognition with Contact Lenses 
 
Contact lenses with iris patterns printed on them can cause errors in the iris recognition system. Daugman has 
proposed a liveness test that can detects if the image has a fake iris pattern[3]. This liveness test is based on the 
frequency domain analysis of iris patterns. If there is a spike of high energy in some middle or high frequency range 

Strategy  Compression 
Parameter

Total 
Compression 

Rate

Increase In 
HD

Cropping (320x320)   

& JPEG 
Compression   

QF = 70 24.8 0.006

QF = 30 53.9 0.011
QF = 20 73.1 0.021

Cropping, ROI & 
JPEG Compression   

QF = 70 53.9 0.015
QF = 30 113.8 0.021

QF = 20 146.3 0.031

Cropping, ROI & 
JPEG2000 

Compression   

CF = 20 60.2 0.018

CF = 50 153.6 0.027
CF = 60 180.7 0.035
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then it means that there is a dot grid pattern caused a fake iris. 
 
Baker et al. [72] have studied the effect of transparent contact lens on the recognition accuracy of several iris 
recognition systems. Their data was taken in the same studio with consistent ambient indoor lighting. They visually 
inspected all the images and reject any that were low quality. They then classified the contact-lens wearing subjects 
into five different categories based on a visible inspection they preformed manually.  
 
 Category 0 – No contact lens 
 Category 1 - minimal or no change to the iris. At most these images contain a faint visible edge. 
 Category 2 - images contain a definite circular boundary on the iris area.  
 Category 3 - contains images which the lens has writing on the lens, the lens fits improperly causing it not to 

lay flat on iris, or the lens produces an artifact greater than a definite ring seen in Category two.  
 Category 4 - contains the iris images where the subject is wearing hard contact lenses. Hard contacts produce a 

very noticeable ring and severely distort the area they cover. 
 
They had 92 subjects that never wore contacts, 52 subjects who wore the same type of contact lenses and 32 subjects 
who wore contacts sometimes and didn’t wear contacts for other test, and there were 3 people who changed the type 
of contacts they wore. In total there are 12,003 iris images from 87 contact-lens-wearing subjects and 9,697 non-
contact-lens wearing subjects. 75% of the subjects were between 19 and 25 years and they have an ethnic 
breakdown of 36 Asian, 6 Hispanics, 122 Caucasian, and 7 subjects no reporting. There is no discussion in the paper 
about the time between the acquisitions of the images, however they do mention that images of hard contacts visible 
look different if they are acquired in different sessions. 
 
All the images that failed to segment correctly in the IrisBEE are also removed from the dataset, but the size of the 
other datasets seems to suggest these images weren’t all removed from the other two datasets. The data shows that a 
different number of images were used for each system in different test, it is unclear how or why these images are 
removed, particularly the 0v0 comparison of the CMU datasets. See Figure 47 for the number of images used. 
 

Figure 47: Number of iris images used to compare in each method 
 
For analysis of these images, this test used three different recognition systems. The first was a modified version of 
the IrisBEE system [68, 73]. The second was the commercial VeriEye Iris SDK from Neurotechnology [60]. The 
third system is an iris recognition by Carnegie Mellon University[36]. The mean element is an average of the 
hamming distance for the IrisBEE and Carnegie Mellon system, the smaller the hamming distance the closer the 
images are to being a match. The mean element for the VeriEye system is match store that VeriEye provides. This 
score is from zero to 3235 where 3235 is an identical image and zero is not a match. In this system the average 
match score is about 400 and the non match score is zero. It should also be noted that in this system comparing 
image 1 to image 2 is not the same as comparing image 2 to image 1. So Baker et al. averaged the results of these 
two different permutations in every case and reported that as the results. 
 

0v0 0v1 0v2 0v3 0v4 1v1 1v2 1v3 2v2 2v3 3v3 4v4

IrisBEE 447875 34459 15760 3000 412 311719 1114 740 211687 32 86634 42329

VeriEye 447612 34471 15801 3000 412 311908 1114 740 211747 32 86649 42442

CMU 442123 34471 15801 3000 412 311908 1114 740 211747 32 86604 42442

Number of Images Used to Compare
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Figure 48: IrisBEE system results; Mean genuine cross matching HD, Cross matching FRR 
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Figure 49: IrisBEE system results; Mean genuine cross matching HD, Cross matching FRR 
 
Figure 48 shows the genuine Hamming distance, the average score for matching iris from the same iris. Each 
category is compared to all the other categories where data is available. Category 0 shows an increase as it is 
compared to worst images. This trend changes inexplicitly when it is compared to Category 4 iris. Category 1 
performs similarly when compared to Category 1 or Category 2 but increases greatly when compared to Category 3. 
Category 2 match score improves when it matched to Category 3. Category 3 self matches performs about the same 
as the Category 3 to Category 0. Category 4 self matches performs the worst of any in this area. 
 
Figure 49 the FRR for all the different cross match scores. For this test Hamming distance that is greater than 0.32 is 
considered to be a false rejection. In this graph the Category 0 increases when compared to Category 1 and slightly 
increases when compared to Category 2. Then Category 0 begins to decrease when it is compared to Category 3 and 
Category 4. Category 1 decreases slight when compared to Category 2 and increases when compared to Category 3. 
The FRR of Category 2 increase dramatically when compared to Category 3. This is unexpected because the 
Hamming distance for this test decreased. This must mean that there are some strong matches that help give this 
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group a strong Hamming distance. This might also have to do with the fact that this group has a small set of only 32. 
Category 3 self matches preformed worst than the category 0 or 1 but better then the category 2 match to Category 
3. Category 4 has a very high FRR of over 40%.  
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Figure 50: VeriEye system results; Mean genuine cross matching HD, Cross matching FRR 
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Figure 51: VeriEye system results; Mean genuine cross matching HD, Cross matching FRR 
 
The VeriEye system performed the best on this test. Figure 50 shows the mean match score for all the tests. When 
comparing Category 0 to the other categories the match score decreases as the level of contact derogation increases, 
until category 4, when the match score improves. Category 1 decrease continuously as the level of contact 
derogation increases. Category 2 score decrease across the board until it is compared to Category 3, then a marked 
improvement is observed. The Category 4 self match performs worse than the Category 4 verse Category 1. As seen 
in Figure 51 the FRR of Category 0 increases until Category 3, and then it becomes zero for Category 3 and 4. 
Category 1’s FRR also decreases to almost zero after Category 0 comparison. Category 2 follows a similar trend as 
Category 1. Category 3 comparison also a very low FRR until it is compared to itself, and a marked increase in FRR 
is observed. The FRR of Category 4 is also very high but not as bad as the Category 2 verse Category 0 comparison. 
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Figure 52: CMU system results; Mean genuine cross matching HD, Cross matching FRR 
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Figure 53: CMU system results; Mean genuine cross matching HD, Cross matching FRR 
 
Finally the mean Hamming distance of the CMU system is analyzed is Figure 52. The HD of Category 0 increase as 
the level of contact derogation is increased. Category 1’s Hamming distance improves as against Category 1 and 2, 
but increase as compared to Category 3. Category 2’s HD decrease when compared to category 1 but increase in the 
self comparison. Category 3 increases from Category 0 to Category 1 comparisons. There is no Hamming distance 
listed for Category 2 verse Category 3 in this test only. The self comparison is slightly higher than the category 0 
verse Category 3. 
 
For FRR in the CMU see Figure 53, A false rejection for this system is a Hamming distance greater than 0.28, this is 
to make it comparable to the IrisBEE system. For Category 0 the FRR increased for Category 1 then decreased until 
Category 4, where an increase was noticed. Category 1 FRR increased slight from Category 0 to self comparison. 
Then the FRR decrease slight when compared to Category 2, then a large increase was observed in Category 3. 
Category 2 increase from Category 0 and Category 1 comparison, but decreased in the self comparison. There was a 
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FRR of 0% listed for the Category 2 verse Category 3, but there was no average hamming distance listed so the 
validity of this point is questionable. Category 4 self comparisons performed the worst. 
 
The contact lenses introduce noise onto iris images, as the result, the ability to match the iris decreases. Their data 
shows that the intra-category match score always got worst as the level of the contact interference increase in all the 
system. The intra-category matches all have relatively large dataset this seems to be a reasonable statement.  
 
Figure 54 has the intra-category FRR for all the systems, all the data points except for one (CMU Category 2) are 
increasing. They went on to say that to improve this enrolling or testing without a contact will improve this. The 
data shows that for Category 4 verse Category 0 always outperforms Category 4 self match dramatically and in all 
systems. The data set for the Category 0 verse 4 is comparatively small, only 412 images, and it is also unclear how 
many iris were used in this and all other tests. So they might not have enough data to say this with certainty. The 
other cross match scores generally don’t follow this trend, they seem to increase and decrease randomly as the level 
of contact interference changes. This might be because the cross match scores all have smaller image sets.  
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Figure 54: FRR vs. category 
 
The false acceptance rate caused by non cosmetic prescription lenses was not discussed in depth in this paper. They 
show some ROC curves and false match score distribution graphs but nothing more than that. For the CMU and 
VeriEye system these graphs show almost no change as contacts are added, but the IrisBEE shows a definite 
increase in FAR when comparing Category 4 images. 

 
5.5 Iris Recognition and Eye Disease 
 
As a greater number of people use iris recognition systems people the likelihood of encountering people with eye 
disease increases. For this reason it is important to examine how eye diseases affect the recognition accuracy of iris 
recognition systems. Aslam et al. [74] are only researchers to study this. In this experiment pictures of diseased iris 
were taken and then compared to an image taken after the iris had been treated. The test consists of data from 54 
individuals. To obtain the image a H100 Iris Guard portable tripod-mounted iris camera was to take a high 
resolution image under controlled illumination. 
 
To compare the images Aslam used Daugmans’s algorithms to process the images and find the Hamming Distance 
between the before and after treatment image. In this test any Hamming distance greater than 0.33 is considered to 
not match. There are five eyes that changed enough to make the Hamming distance greater than 0.33. In all five 
cases these are cases of anterior uveitis. Three of these are posterior synechiae (stuck-down iris causing pupil 
distortion) as shown in Figure 55. None of the other diseases caused a significant Hamming distance increase. Eyes 
that have had laser iridotomies and that had been pharmacologically constricted were correctly identified. Even an 



 

DRDC CSS CR 2011-29 
 

eye with large inferior coloboma (developmental iris defect) was able to be identified with the Daugman algorithm. 
This suggests that even considerable iris abnormalities don’t cause a false rejection. None of the iris with corneal 
disease were falsely rejected, this includes cases where corneal opacities limited the full iris feature view. The 
reason corneal opacities didn’t affect the iris identification is that the NIR light used by the camera was less 
attenuated by opacities. 
 

 
Figure 55: Example of iris pattern change before and after treatment for Synechiae [74] 
 

 
Figure 56: The average Hamming distance for each eye disease. 
 
Figure 56 shows the hamming distance for each of the different eye diseases and the control eyes. This data 
clearly shows that the only significant increase in Hamming distance is caused by anterior uveitis.  
 
5.6 Next Generation Iris Recognition Systems 
 
5.6.1 Video-based Non-cooperative Iris Recognition 
 
As iris recognition technologies continues to mature, it will gain the ability to acquire an image without the end user 
even knowing. This will make iris recognition a great way to verify people because it will cause no extra burden for 
the user. This technology also has great potential for finding people of interest, because a non-cooperative iris 
recognition system can identify people without the making the person aware they are being indentified. This 
application is particularly valuable for security at airport, borders or any other any public place.  
 
Most existing iris recognition methods/systems used individual image for recognition. Some of them may use a few 
image frames for recognition and select the best recognition result to represent the matching result. Under non-
cooperative situation, iris image quality is often low. Using single image for recognition may not achieve good 
recognition result.  

 

Disease # of Eyes

Mean 

Hamming 

Distance Variance 

anterior uveitis 24 0.252 0.0088

corneal disease 33 0.136 0.0030

other anterior disease 12 0.155 0.0030

control 39 0.152 0.0057
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Figure 57: The diagram of the video-based non-cooperative iris recognition system. 
 
In [24], Du et al. proposed a video-based non-cooperative iris segmentation method that can quickly filter poor 
quality images and use coarse to fine approaches to perform accurate iris segmentation. In [40], Du et al. proposed 
using that uses video-based non-cooperative iris recognition system as shown in Figure 57. Unlike traditional 
approach, we used multiple enrollment images to match with input video image. The matching score between the 
enrollment image and the individual video frame is fused with the segmentation evaluation score. After majority 
vote, if the best matching score of the video to an enrollment iris satisfies the matching threshold, the matching score 
will be the matching result for the video to that enrollment eye. Matching results from the video sequence to other 
enrollment eyes will be set to 1 (1 means no-match). If even the highest matching score does not satisfy the 
matching threshold, this video will not be matched to any eye. The result is FAR = 0 and EER = 0 for all thresholds 
since only one or zero matching scores are retained for each video. 73 videos (about 24.5% of the videos) were not 
recognized since some videos could not generate satisfactory matching results. For the rest of the videos, there is 
100% recognition accuracy (0% FAR at 0% FRR). The results show that 100% accuracy can be obtained using 
multiple enrollment images, video sequences of an iris, and fusion of matching scores; even in a non-cooperative iris 
dataset.  
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Figure 58: Matching protocol for non-cooperative iris recognition 
 
As shown in Figure 58, future non-cooperative iris recognition systems will be able to work from a greater distance. 
As this technology continues to improve it even has the potential to scan large groups of people for target 
individuals.  
 

 
 

5.6.2 Multiple Wavelength Based Iris Recognition  
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NIR images have been dominant in iris identification [75]. One downside to NIR light is it requires active NIR 
illumination. Visible wavelength iris recognition could function using environmental illumination. In addition, 
visible wavelength recognition is important because it can be used with facial recognition for multimodal 
biometrics. In the future regular color surveillance camera may have the capability to perform iris recognition.  
 
Visible wavelength iris recognition has its own challenges, especially it is challenging for dark color eyes and 
remote iris recognition. Proenca has discussed several issues using visible wavelength in [75]. He performed iris 
segmentation in unconstrained situation acquired at-a-distance and on-the-move. Rather than segmenting the pupil 
first, like many NIR systems do Proenca first detected the sclera. The information about the sclera was then used to 
find the iris. The data is processed with a multilayered feed-forward neural network to calculate the location of the 
sclera. Proenca then calculated how many sclera pixels are left, right, above and below each non-sclera pixel. By 
looking at the regions that have a significant amount sclera to the left and right it is possible to find the iris region. A 
polynomial regression on the polar coordinate system was then run in order to segment the shape of the iris. To find 
the center of the iris was found by summing the binary image of the iris in the x and y directions and calculating the 
maximum. From there the image is put into polar coordinates and a polynomial is fit to the data points. However in 
[12], Procenca and Alexandre showed that the iris recognition in visible wavelengths are still very challenging and 
the accuracy is much lower than recognition result in NIR wavelengths, especially for dark color eyes. 
 
Chou et al. proposed to use RGB and NIR images together for iris recognition [9]. In this paper a four-spectral 
camera was used to capture non orthogonal view images. The first step in their process was segmenting the pupil. A 
binary threshold was then performed on the NIR image. Morphology is then performed on the binary image to find 
areas that are the size and in the right location. Finally an ellipse fitting algorithm was used to find the boundary of 
the final pupil candidate. An affine transformation is the next step of their process. This process turns the elliptical 
pupil into a circle. This is done my first rotating the image so the major axis of the ellipse is vertical and the minor 
axis is horizontal. Then the image is stretched horizontally so the minor axis is as long as the major axis. Then the 
image is rotated back to its original orientation. Chou et al. designed the Intelligent Random Sample Consensus or 
RANSAC for limbic boundary recognition. This method uses the four-spectral measurements rather than the 
orientation of the edge filter, like tradition intelligent iris segmentation systems. Like most iris recognition rubber 
sheet method is used to normalize the mask and the image in polar coordinates. For encoding the image edge-type 
descriptor are used. Because of noise that could be in the image only the vertical edges are used in their test. The 
two filters they used are derivative of Gaussian and Laplacian of Gaussian. The filters are then convolved with the 
images to get filtered images. If the filtered images have intensity greater than 0 it is likely that there is a ridge at 
that location. For matching the Daugman hamming distance is used.  
 
In the future, multiple-wavelength iris recognition may attack more attention and can work with multiple-
wavelength face recognition together for video surveillance.  
 
5.6.3 Multimodal Eye Recognition 
 
Multimodal biometrics is introduced in 1998 to combine multiple biometrics to do positive human identification in 
commercial applications. By using more than one means of biometric identification, the multimodal biometric 
identifier can obtain high recognition accuracy. However, choosing reliable biometric identifiers is still a question in 
multimodal biometrics.  
 
Since the iris patterns of dark color eyes could reveal rich and complex patterns only under NIR light, if the NIR iris 
image be obtained in long distance, the accuracy of iris recognition will drop dramatically. And if we acquire iris 
image in visible light, the iris patterns of dark color eyes will be hardly visible under visual light.  
 
In [76], Thomas et al. showed that the sclera, the white and opaque outer protective covering of the eye, can also be 
used in human identification. They designed an illumination-, orientation–, translation–, and deformation–invariant 
sclera recognition method. In [77], Zhou et al. proposed a multimodal eye recognition method by fusing sclera and 
iris recognition. Figure 59 shows the process of multimodal eye recognition system. 
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Figure 59: Multimodal eye recognition system.. 
 
For iris recognition, a typical iris recognition method can be used. The diagram of the sclera recognition system is 
shown in Figure 60, which includes segmentation, feature extraction, and feature matching. 
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Figure 60: The sclera recognition system 
 
For the sclera image segmentation process, it includes image downsampling, conversion to the HSV color space, 
estimation of the sclera region, iris and eyelid detection, eyelid and iris boundary refinement, mask creation, and 
mask upsampling. The sclera region is estimated using the best representation between two color-based techniques. 
 
For the sclera vein pattern enhancement, a bank of multiple directional Gabor filters is used for vascular pattern 
enhancement. For the sclera feature extraction, a line descriptor approach is proposed. The line segments are 
described by three quantities – the line segments’ angle to some reference angle at the pupil center, the line 
segments’ distance to the pupil center, and the dominant angular orientation of the line segment. The total descriptor 
for the sclera vein structure is the set of all of the individual segments’ descriptors.  
 
For sclera template matching, a new method based on a RANSAC-type algorithm is developed to estimate the best-
fit parameters for registration between the two sclera vascular patterns.  
 
In multimodal biometrics score fusion part, since matching scores of iris recognition and sclera recognition are not 
in the same range, Min-Max (MM) method is applied to do score normalization. After that, Kernel-based matching 
score fusion of iris matching score and sclera matching score is used to improve the performance of eye recognition 
system. The experimental results show that the proposed eye recognition method can achieve better performance 
compared to unimodal biometric, and the accuracy of proposed kernel-based matching score fusion method is higher 
than other traditional methods.  
 
Other methods of multimodal biometrics are also used, such as fingerprint/iris, and fingerprint/iris/face. In the 
future, more kinds of multimodal biometric systems will be designed/developed to achieve high recognition 
accuracy, be more user friendly, and provide more flexibility in applications. 
 
5.7 Conclusions and Acknowledgements 
 
In this section we preformed thorough literary review of iris segmentation, feature extraction, template generation, 
matching and quality measures. Then the study of the state-of-the-art system was conducted, which includes a test 
and analysis of a commercial system using seven datasets and a summary of available commercial systems. Some of 
the challenges of existing systems were also covered in this section. Finally, new trends in iris recognition were 
discussed. 
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We investigated the vulnerabilities of state-of-the-art iris recognition system over compression, contact lenses and 
eye diseases. Then we discussed non-cooperative iris recognition, iris recognition in the visible light spectra, 
multiple wavelength iris recognition and multimodal biometric approaches. 
 
In conclusion, iris recognition has proven to be an accurate and reliable biometric method. Our extensive study of 
iris recognition systems has proven current systems are able to accurately recognize people in well controlled 
situations. Advances in iris recognition technology will allow even higher accuracy and more ruggedized system. By 
utilizing different spectra of light and multimodal biometrics there will be a great number of applications for 
biometrics. Non-cooperative iris recognition is an emerging area that can make iris recognition more user friendly 
and flexible, and make it even possible for iris-based video surveillance. 
 
The research in section uses the ICE 2005 [68] and MBGC 2008 [66] datasets provided by NIST, CASIA 2.0 and 
CASIA 3.0 iris image dataset collected by the Institute of Automation, Chinese Academy of Sciences [69], WVU 
dataset provided by Dr. A. Ross at West Virginia University [65], and UBIRIS dataset provided by the Department 
of Computer Science at the University of Beira Interior [39]. We will also like to thank the people who contributed 
their sclera data for and IUPUI Multi-wavelength and IUPUI remote dataset.  
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6 GenKey Fingerprint-Based PET Performance Evaluation  
 

6.1 GenKey Technology  
 
GenKey, a leading provider of biometric PET solution, was founded in 2001 as a division of the Norwegian 
Software as a Service (SaaS) company Meltwater. The company has developed a biocryptic algorithm that bridges 
cryptology with biometrics. This patented algorithm converts a biometric image into Public Key Infrastructure 
(PKI)-compatible crypto keys that are irreversible and share no mathematical relationship with the biometric sources 
they represent. Its solutions, branded as Biocryptic ID Management Systems (BIDS), can be applied to a variety of 
contexts including education, licensing and healthcare. 
 
The GenKey algorithm provides a means to enroll and verify individuals based on biometric information, such as a 
fingerprint. The algorithm offers a number of options which provide tradeoffs between recognition speed, accuracy, 
and biometric privacy. 
 
6.1.1 GenKey Feature Template vs. ID Key Enrollments  
 
The GenKey algorithm can perform two types of enrollment. In feature template enrollment, discriminating features 
from fingerprint images are extracted and stored as the individual’s biometric template. The feature template is 
stored for later use and the biometric image may be discarded. 
 
ID Key enrollment also extracts discriminating features from fingerprint images, but converts features into a 
numerical value which represents the individual’s biometric. At the conclusion of an ID Key enrollment, the ID Key 
(numerical value) is stored and the biometric image and feature template may be discarded. This type of enrollment 
is focus of IBG’s performance evaluation. 
 
During ID Key enrollment, an enrollee in provides one or more images from one or more fingers. These sample 
fingerprint images are first converted to feature templates as described earlier. The enrollment feature templates 
from all fingers to be enrolled are then combined into a single digit or key that represents the set of provided 
enrollment fingers. This ID Key can then be stored for later use during verification or identification, as show in 
Figure 61. 
 

 
Figure 61: ID Key Generation Process 
 
An ID Key created from multiple fingerprint positions is referred to as a fusion key. Multiple fingerprint positions 
generally provide higher verification accuracy than a single fingerprint position. 
 
During verification, the individual provides one or more enrolled fingerprints. The GenKey algorithm analyzes the 
images and creates a feature template. The feature template and ID Key are provided to the GenKey algorithm and a 
binary verification decision is returned. 
 
For ID Keys, balancing the tradeoff between FAR and FRR is accomplished through an FAR control parameter 
provided to the algorithm. Keys are created with respect to a particular FAR control parameter. The value of the 
FAR control parameter ranges from 0.0 to 1.0; lower values correspond to lower FAR (and higher FRR). The FAR 
control parameter is only applicable at enrollment. As a result, adjusting the FAR threshold will not impact the error 
characteristics of keys that have already been enrolled. 
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In keeping with the Study’s focus on the commercial viability of PETs for defence applications, IBG tested two 
GenKey ID Key types: 
 
 Standard ID Keys offer performance near the performance of the feature template enrollments. 
 Flex ID Keys tradeoff key size and accuracy.  
 
Various Flex ID Key sizes can be configured to meet the storage needs of the application, and the GenKey library 
will maximize accuracy for the given key size automatically. Flex ID Keys provide similar accuracy performance as 
Standard ID Keys but in a slightly smaller footprint. Flex ID keys are designed to maintain reasonable performance 
levels even at substantially reduced key sizes. From a product development perspective, with the introduction of 
Flex ID Key, GenKey notes the Standard ID Key will be phased out in future releases. The two types of ID Keys, 
along with GenKey’s traditional feature-based enrollment, are compared in Figure 62. 
 

 Feature Template (not a PET) Standard ID Key (PET) Flex ID Key (PET) 

Accuracy Feature enrollments provide the most 
robust performance. 

Standard ID Keys will 
perform at only slightly 
degraded error rates as 
compared to feature 
templates. 

Flex ID Keys provide a 
range of accuracy 
performance options. The 
largest Flex ID Keys 
provide accuracy similar 
to Standard ID Keys. 

Privacy Offers some privacy protection for the 
fingerprint; having access to a feature 
template does not provide a malicious 
user with capability to reconstruct the 
original fingerprint. With detailed 
knowledge of the GenKey feature 
template creation process, a malicious 
user could gain access to general 
information about the fingerprint 
structure. 

ID Keys offer a privacy advantage over feature template 
enrollment. A malicious user with access to the ID Key 
cannot practically regenerate the fingerprint features or 
extract any detailed information about the fingerprint 
structure. The technique used to convert the feature 
template to a key is analogous to a cryptographic one-
way function. It is easy to compute an ID Key from a 
feature template; however, reversing this process is 
computationally infeasible. 

Throughput Feature enrollments offer the fastest 
search speeds. The GenKey algorithm is 
capable of performing millions of feature 
template matches per second using 
ordinary computer hardware. 

While not as fast as feature template matching, ID Key 
verifications can also be performed at relatively high 
speeds using ordinary computer hardware; GenKey 
estimates rates of hundreds of thousands of verifications 
per second. Match speed increases (i.e. becomes slower) 
as stricter match thresholds are applied.  

Typical Key Size 128-256 bytes 64-128 bytes 12-107 bytes 

Figure 62: Standard and Flex ID Tradeoff  
 
The performance of the GenKey algorithm was evaluated using the following ID Key configurations: 

 
• Standard ID 
• Flex ID 12 bytes 
• Flex ID 25 bytes 
• Flex ID 56 bytes 
• Flex ID 107 bytes 
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6.2 Methodology 
 
6.2.1 Test Data  
 
IBG has a collection of approximately 20,000 flat fingerprint images (left and right index, middle, and thumb) from 
1,200 subjects collected under indoor office conditions. Fingerprint images were collected through a 500dpi Cross 
Match Verifier. Each subject provided two samples per position during a first visit. Additionally, approximately 650 
of the 1,200 subjects provided two samples per position during a second visit which occurred roughly one month 
after the first. 
 
Images were inspected at the time of capture for quality, but no automated quality checks were implemented. 
Therefore data quality is variable.  
 
In addition to processing through the GenKey algorithm, IBG processed the same fingerprint dataset through a 
widely-adopted, minutiae-based fingerprint algorithm –Neuortechnology VeriFinger version 6.3. The VeriFinger 
processing approach was equivalent to the GenKey approach described below. Comparing and contrasting GenKey 
results with VeriFinger results will provide a general frame of reference for validating the commercial viability of 
GenKey’s ID Key technology.  
 
6.2.2 Enrollment Process  
 
Using a Software Development Kit (SDK) provided by GenKey, IBG developed a custom application that 
performed feature extraction, template creation, and ID Key creation. First-visit fingerprint images were used for 
enrollment and ID Key creation. As shown in Figure 63, two different images for each position were used to create a 
generalized enrollment. This increases matching accuracy and is consistent with GenKey usage in operational 
deployments.  
 

 
Figure 63: Enrollment Transaction Logic 
 
Both index fingerprints had to enroll in order for an enrollment to be successful. 
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6.2.3 Recognition Process  
 
IBG developed a custom application that performed bulk matching. Second-visit fingerprint images were used for 
recognition (i.e. as probe images) are compared against first-visit fingerprint data.  
 

 
Figure 64: Recognition Transaction Logic 
 
As shown in Figure 64, verification was based on the following two-position logic: 

 

 
 

Where a match is denoted by  and a non-match is denoted by . 
 

 
 

 
 

 
If any match occurred between a sample and an ID Key, the transaction was declared a match. If all samples failed 
to match their respective ID Keys, the transaction was declared a non-match. All comparisons were intra-position, 
meaning that (for example) index fingerprints were never compared against middle fingers. 
 
Processing volumes (less quality failures and missing positions) as shown in Figure 65. 
 
 

 GenKey  VeriFinger 6.N 
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Subjects 650 650 

V1 Samples 2 2 

V2 Samples 2 2 

Positions 2 2 

Genuine comparisons 456 459 

Impostor Comparisons 550976 560741 
Figure 65: Fingerprint Test Parameters 
 
Metrics 
 
Based on collection and comparison processes described above, metrics were generated as shown in Figure 66 
 

Usability Metrics Accuracy Metrics 

 Failure to Encode Rate (FTE) 
 Failure to Acquire Rate (FTA) 
 Processing Time 

 False Match Rate (FMR) 
 False Non-Match Rate (FNMR) 
 Matching Error Rates by Position 
 Distribution of Errors by Subject 

Figure 66: Fingerprint Test Metrics  
 
6.3 Results 
 
6.3.1 Throughput 
 
The most relevant timing metric for GenKey is time to generate a feature template (i.e. encoding or enrollment 
time). At operationally relevant security levels, GenKey averaged approximately 400ms per image. In a 1:1 system, 
this process time can be considered trivial.  
 
6.3.2 Enrollment and Encoding Rates  
 
This section presents results for enrollment and encoding rates. These rates can be discussed at the image level and 
at the transaction level. 
 
At the image level: 
 
 Failure-To-Enroll Rate (FTE) is the proportion of enrollment transactions in which the test subject failed to 

enroll  
 Failure-To-Acquire Rate (FTA) is the proportion of recognition transactions in which the test subject failure to 

encode  
 
At the transaction level:  
 
 A transactional failure to enroll occurred if zero fingerprint positions were able to generate a template or key 

during enrollment  
 A transactional failure to acquire occurred if either fingerprint position failed recognition-phase encoding (in a 

live-capture system, this is referred to as acquisition)   
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Image-level FTE rates are shown in Figure 67. 
 

 Enrollment Attempts FTE Count FTE Rate 

VeriFinger 6.3 2448 42 1.72% 

GenKey ID Key 2448 45 1.84% 
Figure 67: Comparative Fingerprint FTE 
 
Image-level FTA rates are shown n Figure 68. 
 

 Recognition Encoding 
Attempts 

FTA Count FTA Rate 

VeriFinger 6.3 1841 1 0.05% 

GenKey ID Key 1841 66 3.59% 
Figure 68: Comparative Fingerprint FTA 
 
Results show that GenKey and Verifinger FTE are roughly equivalent, while GenKey FTA is substantially higher 
than VeriFinger FTA. This underscores the concept that GenKey is predicated on the use of high-quality images 
whose quality is validated  in real time at the point of capture.  
 
6.3.3 Quality of Enrolled Images 
 
Figure 69 shows GenKey-generated quality values for encoded images. Quality values range from 0-1 and are 
binned by 0.1 for clarity. Results suggest that as long as images are of sufficient quality to create a reference 
template, that GenKey will bin the image as high-quality.  
 

 
Figure 69: Quality of Encoded Fingerprint Images 
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Figure 69 shows GenKey-generated quality values for encoded images. Quality values range from 0-1 and are 
binned by 0.1 for clarity. Results suggest that as long as images are of sufficient quality to create a reference 
template, that GenKey will bin the image as high-quality.  
 
Quality Level  

0.0-0.2 

     
0.2-0.4 

     
0.4-0.6 

     
0.6-0.8 

     
0.8-1.0 

     
Figure 70: Examples of Image Quality from 0.0 to 1.0 
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6.3.4 Accuracy Rates 
 
Figure 71 presents FNMR at specific FMR values. Systems are frequently evaluated based on their genuine error 
rates at specific impostor error rates. Many systems are configured to provide 0.10% or 0.01% FMR, such that the 
likelihood of a false match is 1 in 1000 or 1 in 10,000 (respectively). Therefore it is useful to examine genuine error 
rates at these specific impostor error rates. Error rates presented in this section do not include acquisition failures 
(FTA or FTE).  
 

 Genuine Error Rates at 0.10% FMR Genuine Error Rates at 0.01% FMR 

VeriFinger 6.N 1.74% 1.74% 

GenKey Standard ID Key 2.19% 2.85% 

GenKey Flex ID Key 107 Byte 1.54% 2.41% 

GenKey Flex ID Key 56 Byte 1.75% 2.63% 

GenKey Flex ID Key 25 Byte 2.85% 6.80% 

GenKey Flex ID Key 12 Byte 7.89% 20.18% 
Figure 71: FNMR at Vendor-Specified FMR Thresholds  
 
Figure 72 shows GenKey results at each evaluated threshold. Values in bold, in the range of Threshold values from 
0.30 to 0.50, can be considered operationally relevant.  
 

 Standard Flex-ID 107 byte Flex-ID 56 byte Flex-ID 25 byte Flex-ID 12 byte 

Threshold T-FMR T-
FNMR 

T-FMR T-
FNMR 

T-FMR T-
FNMR 

T-FMR T-
FNMR 

T-FMR T-
FNMR 

0.00 0.00% 43.86% 0.00% 39.47% 0.00% 40.35% 0.00% 50.88% 0.00% 64.25% 

0.05 0.00% 33.77% 0.00% 32.24% 0.00% 32.89% 0.00% 42.54% 0.00% 55.92% 

0.10 0.00% 27.19% 0.00% 23.68% 0.00% 24.34% 0.00% 33.77% 0.00% 47.59% 

0.15 0.00% 20.83% 0.00% 17.98% 0.00% 18.42% 0.00% 23.90% 0.00% 39.25% 

0.20 0.00% 13.60% 0.00% 10.75% 0.00% 11.40% 0.00% 16.01% 0.00% 28.29% 

0.25 0.00% 8.99% 0.00% 6.80% 0.00% 7.24% 0.00% 9.87% 0.01% 20.18% 

0.30 0.00% 5.04% 0.00% 3.51% 0.00% 3.95% 0.01% 6.80% 0.02% 13.60% 

0.35 0.02% 2.85% 0.03% 2.41% 0.03% 2.63% 0.03% 4.39% 0.07% 7.89% 

0.40 0.09% 2.19% 0.14% 1.54% 0.14% 1.75% 0.12% 2.85% 0.23% 4.39% 

0.45 0.38% 0.88% 0.56% 0.88% 0.56% 1.10% 0.44% 1.54% 0.74% 2.63% 

0.50 1.91% 0.44% 2.51% 0.22% 2.49% 0.44% 1.72% 0.88% 2.85% 1.32% 

0.55 3.21% 0.22% 4.07% 0.22% 4.04% 0.22% 2.71% 0.66% 4.34% 1.10% 

0.60 5.26% 0.00% 6.51% 0.00% 6.46% 0.00% 4.29% 0.44% 6.39% 1.10% 

0.65 8.22% 0.00% 9.88% 0.00% 9.81% 0.00% 6.68% 0.22% 9.01% 1.10% 

0.70 12.30% 0.00% 14.44% 0.00% 14.34% 0.00% 9.78% 0.00% 11.93% 1.10% 

0.75 19.13% 0.00% 21.83% 0.00% 21.70% 0.00% 14.71% 0.00% 15.56% 0.44% 

0.80 27.22% 0.00% 30.56% 0.00% 30.40% 0.00% 21.20% 0.00% 18.92% 0.44% 

0.85 42.65% 0.00% 45.99% 0.00% 45.79% 0.00% 34.55% 0.00% 23.52% 0.22% 

0.90 54.70% 0.00% 56.71% 0.00% 56.51% 0.00% 45.80% 0.00% 26.78% 0.22% 

0.95 63.38% 0.00% 63.71% 0.00% 63.48% 0.00% 55.39% 0.00% 30.11% 0.22% 

1.90 70.76% 0.00% 70.69% 0.00% 70.46% 0.00% 62.51% 0.00% 42.81% 0.22% 
Figure 72: GenKey Matching Accuracy (Table)
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Performance in the following section is rendered through results tables and detection error tradeoff (DET) curves. 
The range of thresholds was selected based on the incidence of observed errors and on consideration of operationally 
realistic values. DET curves plot error pairs (e.g. FNMR and FMR) across a range of values. Left- and lower-most 
DET curves indicate lower comparison error rates. DET curves can be used to identify the point at which one wishes 
to operate one's system – e.g. at 0.01% FMR or 1.00% FNMR – and estimate the corresponding genuine or impostor 
error rate at that operating point.  
 
While DET curves will ideally be smooth through the full range of performance, at the right- and bottom-hand side 
of the curve, plots may become "stepped", indicating that the number of genuine or impostor errors at these points is 
unchanged while the counterpart error type changes. In order to maintain readability and to focus on reasonable or 
differentiated performance ranges, the DETs below show error rates across the following ranges: 
 
 T-FNMR: 0.1% to 10%  
 T-FMR: 0.01% to 10% 
 
False non-match rates and false match rates are calculated by dividing the number of errors at a given threshold by 
the total number of genuine and impostor comparisons executed, respectively. The total number of genuine and 
impostor comparisons executed for each comparison type precedes each results table. In many operational 
deployments, users are permitted to execute multiple attempts, such that FNMR is lower than observed in single-
attempt tests. If the Report reader were to focus on either attempt-level or transactional comparison error rates, the 
latter is more operationally realistic.  
 
Figure 73 shows the same GenKey matching results in chart form, and also adds results for Neurotechnology 
VeriFinger.  
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Figure 73: GenKey Matching Accuracy (DET) 
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6.3.5 False Match Rates by Subject  
 
For many biometric systems, certain subjects encounter higher false match rates than others. IBG analyzed the 
distribution of false matches across subjects. Subject-specific false match rates (aggregated across all evaluated ID 
Key types and sizes, and measured at a typical threshold of 0.45) ranged from as high as 4.04% and as low as 
0.00%. The ten Test Subjects with the highest false match rates are shown in Figure 74. While false match rates 
generally decline as key sizes increase, in some cases subjects encountered higher false match rates at larger key 
sizes. For example, 251 of 457 subjects encountered higher false match rates at an ID Key size of 56 bytes than at an 
ID Key size of 25 bytes.  
 

 standard 107 56 25 12  standard 107 56 25 12 

ID FM FM FM FM FM Comparisons FMR FMR FMR FMR FMR 

861 49 54 54 49 40 1217 4.03% 4.44% 4.44% 4.03% 3.29% 

931 32 42 42 25 20 1217 2.63% 3.45% 3.45% 2.05% 1.64% 

77 22 36 36 30 14 1217 1.81% 2.96% 2.96% 2.47% 1.15% 

264 22 26 26 30 33 1217 1.81% 2.14% 2.14% 2.47% 2.71% 

419 27 34 34 25 12 1217 2.22% 2.79% 2.79% 2.05% 0.99% 

504 24 26 26 17 29 1217 1.97% 2.14% 2.14% 1.40% 2.38% 

167 17 19 19 22 40 1217 1.40% 1.56% 1.56% 1.81% 3.29% 

738 22 33 33 23 4 1217 1.81% 2.71% 2.71% 1.89% 0.33% 

233 22 31 31 12 19 1217 1.81% 2.55% 2.55% 0.99% 1.56% 

884 19 29 29 18 20 1217 1.56% 2.38% 2.38% 1.48% 1.64% 
Figure 74: Test Subjects with Highest Aggregated False Match Rates 
 
The distribution of false match rates across all Test Subjects is shown in Figure 75. 
 

 
 Figure 75: Test Subjects with Highest Aggregated False Match Rates  
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Annex A Review of Commercial PET Techniques  
 

A.1 Hitachi, Ltd. 
 
Hitachi, Ltd., Systems Development Laboratory is investing in the research and development of cancelable 
biometric systems. Hirata and Takahashi (2009) proposed a method that uses correlation-invariant random filtering. 
The method performed accurately in empirical tests on fingerprint and finger vein verification applications. It is 
feasible that this protocol was integrated with VeinID, which is reportedly capable of producing encrypted and 
cancelable biometrics. 
 
VeinID 
 
VeinID is the Hitachi’s premier finger vein sensing product. In a presentation by a researcher at the Systems 
Development Lab, VeinID has been integrated with systems compliant with international standard ITU-T X.1088, 
which describes standard methods for biometric template protection. According to the presenter, Hitachi deployed 
VeinID to authenticate users in a Japanese cloud computing service. For each transaction the user presents a finger 
to a vein sensing device. Vascular patterns are extracted and transformed by a secret parameter. Templates are 
matched in the encrypted domain. A template can be cancelled by reenrolling a finger vein pattern with a new secret 
parameter. Upon reenrolling a template, the vascular pattern is encrypted twice: once by the old parameter and once 
by the new parameter. The difference value between these is sent to the server, where the old template is compared 
with the difference value. If there is a match, the new template is stored in the dataset. 
 
Hitachi partnered with Medibase to develop BASEmetric, an access control system that is intended to verify and 
identify patients in health care systems. The system uses VeinID to capture and process finger vein images. A 
whitepaper of the system claims that it “retains only a mathematical code for identification purposes. The actual 
finger vein itself is not stored. The mathematical code that is retained is not useful to any entity outside the 
immediate healthcare system.” A press release published in June 2010 reported that BASEmetric had been deployed 
at two hospitals in an Ohio health system. The publication touts the privacy-preserving characteristics of the system. 
 
Further Reading 
 
Hirata, Shinji. 2009. “Cancelable Biometrics with Perfect Secrecy for Correlation-Based Matching.” Hitachi, Ltd., 
Systems Development Laboratory. ”http://www.hitachi.com/rd/sdl/conf/2009/icb/index.html. 
 
Isobe, Yoshiaki. 2010. “Telebiometrics, and Applications in Japan.”ITU-T Workshop on Addressing Security 
Challenges on a Global Scale. http://www.itu.int/dmspub/itu-t/oth/06/35/T063500000200524PDFE.pdf. 
 
Hitachi America, Ltd. 2010. “Hitachi America, Ltd And Medibase Solutions, Inc Deploy Finger Vein Biometric 
Solution At Health Care System In Ohio.” http://www.hitachi.us/about/press/details/063020102.html. 
 
Medibase. “BASEmetric: Accurate Biometric Identification of Returning Patients.” 
http://www.medibase.com/pdf/BASEmetric.pdf. 
 
A.2 Mitsubishi Electric Research Laboratories (MERL) 
 
MERL began investing in the research and development of biometric template protection algorithms circa 2005. Its 
researchers pioneered the development of syndrome coding methods that employ local aggregation to generate 
binary feature vectors. The company was the assignee to a patent that laid claim to a method of biometric template 
protection by way of syndrome coding. 
 
A.3 Securics, Inc. 
 
Securics, Inc. sells products and integrates systems using the biotoken method developed by  
Boult et al. (2007). The company developed an application for PayPal. It integrates a biometric key infrastructure 
based on Biotope. Fingerprint data, transactional data, and multiple keys are used to produce private tokens that 
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protect privacy and security in electronic commerce. After enrollment, users need only to present their fingerprint to 
confirm a transaction. The fingerprint image is never stored or transmitted. The identity verification process is 
asymmetric. 
 
A.4 TÜBITAK-UEKAE 
 
The National Research Institute of Electronics and Cryptology (TÜBITAK-UEKAE) is deploying a biometric civil 
identification system for the Electronic Identity Authentication and Management System in Turkey. The project is 
expected to be complete in 2013. The new system will feature smart cards that store fingerprint or finger vein data of 
the card owner. The institute is conducting joint studies with Hitachi-Omron to integrate finger vein recognition into 
the passport system. A presentation by lead developer Alper Kanak describes the template protection process. 
During enrollment a biometric input is captured and preprocessed. Features are extracted and scrambled with chaff 
data generated by a “hardware-based truly random number generator.” Genuine and chaff points are represented as 
triplets , where  are the coordinates of the minutiae points and  is the angle of the minutiae point. The 
hardened template is encrypted with a private key and stored on the EEPROM of the smart card, and nowhere else. 
In a demonstrative presentation of the system the developers reported to have achieve 1.37% EER. Superior results 
were reported in Kanak and Sogukpinar (2007), which achieved 0.0% FRR at 0.1% FAR. 
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Annex B Patent Reviews 
 

B.1 Bjorn (2000) 
 
Assignee: DigitalPersona, Inc. 
 
Bjorn patented a method and apparatus for generating cryptographic keys and digital certificates using fingerprint 
feature data. This publication was among the first in both academic and commercial discourses to propose the use of 
biometrics in the key generation process. The proposed method begins with the user presenting a fingerprint image 
from which features are extracted and encoded onto a template. The template is hashed to create a cryptographic key 
that is stored on a dataset. In a second proposed variation, additional features are added to the template prior to 
hashing it. In a third proposed variation, “ghost” features are added to the template prior to hashing it. In the digital 
certificate variation, the user submits a fingerprint template to a certifying authority (CA). The CA generates a 
digital certificate that includes the template data and signs the certificate with a private key. The certificate is 
returned to the user, who decrypts the certificate with the CA’s public key. The user retrieves the public key and 
fingerprint template from the certificate. The user will be able to decrypt a protected file if the public key decrypts 
the file and the fingerprint matches the template. 
 
B.2 Bolle et al. (2004) 
 
Assignee: IBM Corporation 
 
Bolle et al. were among the first to patent a cancelable biometric authentication system and method.88 The proposed 
invention was intended to fortify biometric templates against unauthorized dissemination or theft, which would 
otherwise permanently compromise the identities of their genuine owners. The principal claim of the invention was 
the use of parameterized, noninvertible transforms to distort an acquired image or set of features into an encrypted 
template that cannot feasibly be reconstructed into the original biometric. They extend their claim where: (a) the 
biometric modality includes a fingerprint, face, hand, iris, blood vessel pattern, vocalization, or signature; (b) the 
distortions are applied to an orthogonal Cartesian grid or a circular polar-coordinate grid; (c) the distortion process is 
of a geometric, quantized or block-scrambling nature; (d) the biometric features distorted include fingerprint 
minutiae, location of facial features, iridial texture, formant frequencies and derivatives of a speech signal, and joint 
lengths and widths of a hand; (e) the matching process incorporates multiple identifiers. In sum the patent laid claim 
to most of the fundamental methods that would be used by the researchers whose approaches to cancelable 
biometrics are reviewed in this report. 
 
B.3 Davida and Frankel (2010) 
 
Davida and Frankel patented a system and method for preserving privacy in biometric authentication and 
identification systems where the biometric is not stored on a dataset and matching is conducted offline on the client 
machine. The inventors note that the proposed system could be extended to online systems. On the client machine, 
only an “identity verification template” (IVT) is stored. The bulk of the patent describes a system for storing and 
matching biometric templates in a physically and logically secure location. Section 3.2 describes the systemic design 
of cancelable, multifactor biometric key generation.  
 
B.4 Chang et al. (2010) 
 
Assignee: Industrial Technology Research Institute 
 
Chang et al. patented a system and method for generating cryptographic keys from biometric data by way of feature 
transformation. Each user possesses a unique transform unit that can be reissued in the event that the protected 
template is compromised. The inventors mentioned that linear discriminant analysis produces vectors with high 
interclass variability and low intraclass variability. Thus in a description of the preferred embodiment they explained 

                                                 
88 They filed the patent application in June, 2000, which predates almost all of the articles reviewed in this report. 
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how to use cascaded linear discriminant analysis, an iterative series of linear discriminant analyses, to map a 
biometric feature signal onto a projection vector. The optimal projection vector can be derived such that 
 

 
 
where Sw

-1=0.5(Sa + St), in which S_a and S_t are the covariance matrices of the features of the genuine and imposter 
users respectively, and m_a and m_t are the mean of biometric features of the authenticated and imposter users 
respectively. This equation projects high-dimensional biometric features onto a one-dimensional feature space. 
Iterating the equation M times produces M projection vectors to transform N-dimensional biometric features into M-
dimensional feature signals. This process maximizes the distance between the mean samples of an authenticated user 
and imposters, making each protected template maximally unique relative to one another. 
 
A key generation unit produces a cryptographic key according to bit information stability provided by feature 
signals in each dimension according to different distinguishabilities. Figure 76 illustrates the procedure for 
generating reliable cryptographic keys from the feature signal: (a) represents the feature signal distribution of the 
authenticated user and the global feature signal distribution all users in a given dimension; (b) represents the position 
of the left and right boundaries JB and RM, expressed as 
 

 
 
where m_a and ó_a are the mean and standard deviation of the genuine feature signal distribution and m_g and ó_g are 
the mean and standard deviation of the global feature distribution; (c) represents the segments with the same size as 
the authentic region covering the range between the left and right boundaries LB and RM; and (d) represents 
corresponding index to each above segment, where the index of each segment is selected according to the position of 
each segment in the feature space. 
 

 
Figure 76: Schematic drawing of the processing procedure of the stable key generation unit  
B.5 Draper et al. (2010) 
 
Assignee: Mitsubishi Electric Research Laboratories, Inc. 
 
Draper et al. patented a method for secure biometric data by encoding syndrome vectors. They laid claim to methods 
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in which a syndrome decoder: (1) uses belief propagation; (2) is based on a measurement model accounting for 
noise; and (3) determines parameters of source and channel models from training data. The patent mostly describes 
the preferred embodiments of the proposed method, which include: a syndrome encoder and hashing method for 
securely storing biometric parameters; a syndrome code based encryption method for securely storing data 
encrypted with biometric keys; and a method of optimizing syndrome codes used for secure biometric applications. 
The first is embodiment reviewed in this report. 
 
Syndrome and Hashing Method for Secure Biometric Parameters89 
 
During enrollment, the user presents a biometric image from which a feature vector is extracted using an existing 
feature extraction algorithm. Biometric parameters of the feature vector are encoded using a syndrome encoder; 
while a message authentication code or hash function is concomitantly applied to the biometric parameters to 
produce an enrollment hash. The syndrome vector and hash are stored as a pair  in a dataset. The proposed 
syndrome encoder can operate on integer values in addition to binary values. During authentication, the parameters 
of a biometric query are combined with one or more stored syndrome vectors using a syndrome decoder to recreate 
the parameters of the original biometric. Access is granted if the parameters of the query biometric match those of 
the decoded biometric. Figure 77 illustrates the systemic design of the patented syndrome and hashing method for 
biometric template protection. 
 

 
Figure 77: Schematic of a preferred embodiment of a secure biometric access control system  
 
B.6 Akkermans et al. (2007) 
 
Assignee: Philips 
 
Akkermans et al. filed a patent application for the invention of a method and system of protecting templates in 
biometric identification systems. The explicit goal of the invention was to preserve verification performance while 
obfuscating the identities of template owners. During enrollment, the user presents multiple impressions of the same 
                                                 
89 See p. 27. 
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biometric image. Features are extracted from each input image and the elements in the each vector are quantized. 
The quantized templates are compared, and the components which appear less frequently are considered unreliable 
and discarded, resulting in a set of reliable feature components likely to be reproduced by the genuine user in 
subsequent transactions. A subset W1 of the reliable components is stored in a central dataset to be used as helper 
data during authentication. The security of the system is a function of the value of the quantization resolution, 
whereby a lower resolution increases the tolerance of the system while increasing the likelihood that an imposter 
will be incorrectly authenticated. In Section [0021] the inventors extended the preferred embodiment to create 
cryptographically secure codeword of the biometric data. A randomly generated secret S is encoded into a codeword 
C and combined with the reliable feature component vector X’ by way of, for example, an XOR operation, 
producing a second helper data set W2. The original secret S is concealed by a hash function F, and both the hashed 
secret F(S) and the helper data set W2 are stored on the central dataset. 
 
B.7 Bolle et al. (2009a) 
 
Assignee: IBM Corporation 
 
This patent application laid claim to a method whereby an identity is verified or identified upon the successful 
comparison of two or more encrypted, cancelable biometric templates, such that the identities of the authenticating 
user and those in the dataset are never disclosed during the whole process of authentication. The process by which 
templates are matched is as follows: (1) a transformed biometric is presented; (2) a second biometric is transformed 
in a manner parallel to that of the first biometric; (3) the two transformed biometrics are compared; and (4) matches 
are reported. Also claimed in the patent are an electronic device and a computer program that execute the proposed 
method. 
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Annex C Iris Recognition Techniques and Standards  
 

C.1 Algorithms and Templates 
 
Iris recognition refers to the process of identifying or authenticating individuals based on random patterns of their 
irises. Despite its wide employment, automated iris recognition is relatively young. Generally, an iris recognition 
system is comprised or four steps namely, image capturing, iris segmentation, feature extraction and matching.  
 
The goal of image capturing is to acquire high quality data that is employable for recognition purposes. The purpose 
of the second step, iris segmentation, is to isolate the iris from the rest of the eye image and the pupil. Segmentation 
is very important and directly affects the efficiency of feature extraction. There are a number of challenges in 
localizing the iris such as eyelid and eyelash occlusion, light reflections or shadows created during image capturing. 
 
Feature extraction operates on segmented iris images, for the design of discriminative features i.e., features which 
are unique to an individual and allow the system to distinguish him/ her in a population. Typically, such features are 
either texture based or zero crossing representations of concentric circles around the iris. The most widely explored 
approach to feature extraction is by Daugman [7-11]. However there exist a number of alternative methods that have 
demonstrated promising results as well. This section provides an overview of these methodologies, along with 
Daugman’s approach and concludes with the related to iris recognition standards currently in place.  
 
Ma et al. [1], proposed a four step recognition algorithm that performs the following operations: Image quality 
assessment and selection, preprocessing, feature extraction and matching.  
A typical iris camera provides more than one snapshots of the iris and the objective is to automatically detect 
whether the biometric information is occluded, blurred or out-of-focus. A quality descriptor based on the frequency 
distribution of the captured image is defined as follows: 
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Where ( , )F u v is the Fourier spectrum of an iris region and 1f , 2f  are the radial frequency pair and bound the 
range of the corresponding frequency components (low, middle and high). Every quality factor D has two measures. 
The first measure can be used to detect occlusion, as it relates to the overall power of the image. The second 
measure takes smaller values for defocused or blurred images.  
 
Preprocessing is an essential step for biometric recognition systems. Without any treatment, feature extraction from 
raw images would be meaningless. In [1], preprocessing includes: iris localization, normalization and enhancement. 
The iris is localized with the Canny edge detector which is applied on the image after projection on the horizontal 
and vertical directions. The iris is unwrapped to a rectangular block of fixed size with the following transformation: 
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Where nI  is the image, 
( ( ), ( ))p px y 

 and 
( ( ), ( ))i ix y 

 are the coordinates of the inner and outer boundary 

points in the direction   in the original image oI . Finally, an estimate of the background illumination is used to 
adjust the contrast of the image so that the texture if uniformly enhanced along the rectangular.  
 
Feature extraction in [1] operates in the frequency domain, with the use of circularly symmetric sinusoidal functions. 
These functions are similar to Gabor filters with the difference being that the latter use oriented sinusoidal functions. 
The kernels of the filters applied in [1] target to capture the local properties of the texture and are estimated as 
follows: 
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Where 
( , , )iM x y f

 denotes the modulating sinusoidal function, f is the frequency of the sinusoidal function 

and x , y  are the space constants of the Gaussian envelope along the x and y axis respectively and θ denotes the 
orientation of the Gabor filter. 
 
It was observed that the upper portion of the normalized iris image (closer to the pupil) provides the most distinctive 
texture information. Furthermore, there are lower chances of eyelashes to occlude these regions. For this reason, 
only this region of interest (ROI) was used for feature extraction. Given the above specified filters, the output of 
feature extraction is: 
 

  1 1 1 1 1 1( , ) ( , ) ( , )iF x y I x y G x x y y dx dy   , 1, 2i       (10) 

Where iG
 is the ith channel of the spatial filters, ( , )I x y  denotes the ROI and 

( , )iF x y
is the filtered image. In 

addition, statistical features are extracted for each 8x8 block. For every filtered block the mean and the absolute 
deviation serves as the feature vector: 
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Where w is an 8x8 block in the filtered image and n is the number of pixels in that block. Such features acquired 
from all the respective blocks in the ROI are concatenated into an 1D feature vector. Therefore, the output of feature 
extraction is a feature vector of length 1536. 
 
The dimensionality of the feature vector is reduced prior to classification. This reduction was based on the Fisher 
Linear Discriminant Analysis (LDA), which is a supervised machine learning technique. LDA transforms a vector in 
a way that the within-subject variability is reduced and at the same time the between-subject is augmented. Given an 

LDA transformation matrixW , the new feature vector is estimated through projection: 
Tf W V           (13) 

Where V  is the 1536 dimensional input, and f is the new feature vector of reduced dimensionality. Classification 
is performed based on the nearest centre method, with the Euclidean norm utilized as the similarity measure.  
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The system in [1] was tested on the CASIA Iris dataset, which includes 2255 iris images from 213 subjects. The 
performance was reported for various dimensionalities of the feature vector, with accuracy reaching 99.43% for a 
dimensionality of 220.  
 
Boles et al. [2] proposed a feature extraction scheme based on the wavelet transform of the iris signature i.e., the 
gray scale density along concentric contours. The essence of the feature extractor lies on the local structure of the 
iris patterns along circles. More specific, the proposed framework is comprised of three steps, namely preprocessing, 
feature extraction and classification.  
 
During preprocessing is the image is subjected to edge detection for the localization of the iris. By taking into 
consideration the fact that iris has a circular shape, edge detection is tuned in seeking a closed contour.  
 
The region formed by the circular contour propagates to feature extraction. Since the local structure is examined at a 
circular level, a reference point is determined based on the centroid of the previously detected iris. Using this point, 
a number of virtual contours are considered to be structurally circular and concentric around the pupil. Every 
contour is revisited and treated independently by feature extraction as an 1D signal. The amplitude along the contour 
(gray scale intensity) is normalized and the length is normalized to acquire comparable views for any image. The 1D 
signal is further processed using the dyadic wavelet transform, in order to retain only few low resolution levels not 
affected by high frequency noise. The zero crossings along these levels are detected and used for the design of the 
biometric template. 
 
The template is a combination of both the location of the zero crossings and the amplitude of the signal between two 

adjacent zero crossings. For instance, at a particular wavelet level j  the template, denoted as jZ f
, is a set of 

ordered complex numbers for which the real part describes the magnitude between two adjacent zero-crossings, and 
the imaginary part the locations of the zero-crossings. 
For matching, two dissimilarity measures are defined to associate an unknown input signature g and candidate 

identity f  at a particular resolution level j : 
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Where  is a scale factor, while 
[ ( )]j r

 and 
[ ( )]j r

 are the real and imaginary parts of the representation 

respectively. The overall dissimilarity of g and f is the average dissimilarity of the two over all decomposition 
levels. 
 
The performance of this algorithm was reported for iris images of two subjects but under lighting and noise 
variations as well as for different camera-to-face distances. The proposed dissimilarity measures managed to 
distinguish the two irises even under extreme lighting and distance variations. However, the system was shown to be 
prone to noise.  
 
Wildes et al. [3] were among the earliest to explore automatic iris recognition. Apart from the template design 
algorithm, this work also presented a schematic diagram for the acquisition of the iris image, by taking into account 
the effects of illumination as well as the positioning of the eye into the camera’s field of view. Preprocessing of the 
acquired image included simple low-pass filtering with a Gaussian filter, and spatial down-sampling that reduces the 
resolution in order to better assist iris detection. The iris is then localized using gradient-based edge detection and 
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simple voting of the detected edge pixels. The essence of feature extraction in [3], was to capture the range of spatial 
structures using a two-dimensional band-pass decomposition. The decomposition was based on a Laplacian 
pyramid. A four level decomposition was performed, where every level encompassed two steps:  
 
 Low pass filtering of the iris and down-sampling by a factor of two on the horizontal and vertical directions. 

 
 Starting from the smallest image, it is expanded by a factor of two (up-sampling with linear interpolation) and 

subtracted from the one which is one level below. 
 
With this expansion, four band-pass iris images were acquired and used as the biometric template. Matching was 
performed using a shift, scale and rotate methodology which given a pixel at the template image seeks to establish a 
match with any pixel of the input image.  
 
The performance of this algorithm was tested on 500 iris images from 50 volunteers. Impostor tests were performed 
using 40 of those subjects. The identification performance was 100%. 
 
Avila et al. [4] presented a zero-crossing based iris representation in 2002. The first step of the algorithm was to 
convert the color image to gray scale and to normalize the respective histogram. Iris localization was then performed 
by locating the centre of the iris as well as by taking advantage of the circular structure. Furthermore, the diameter 
of the iris was normalized, to acquire comparable irises along all images. However, no other information was 
reported on this process. 
 
Feature extraction was based on the gray color intensity along virtual co-centered contours, using the centre of the 
pupil as a reference. This is essentially a 256bits 1D signal, referred to as the iris signature. Once the signature was 
acquired, the dyadic wavelet transform was used for further processing and template design.  
 
The signal at every level was searched for sign changes. Linear interpolation was used between consecutive samples 
of opposite signs, in order to establish the location of zero-crossings. Only the finest levels of the decomposition 
were excluded from this process, due to their vulnerability to high frequency noise (only the four lowest levels were 
used for matching).  
 
Matching was performed using three different measures i.e., the Euclidean distance, the Hamming distance and 
dissimilarity functions. The Hamming distance was observed to achieve the highest classification rate (97.9%) for 
200 images of 20 subjects.  
 
An approach based on Gabor filtering and the wavelet transform was reported by Zhu et al. [5]. Similar to other 
methodologies, preprocessing was a three step operation as follows:  
 
 Iris localization, where the geometrical and color information of the pupil is used to isolate it.  
 Iris normalization that accounts for the possible deformations, by mapping the iris to a rectangular block of 

fixed size. 
 Image enhancement with local histogram normalization. This operation treats the effects of non uniform 

illumination.  
 Feature extraction encompassed two sets of features, both related with the texture of the iris. First, a multi-

channel Gabor filter was designed for every cortical channel: 
 

( , ) ( , )cos[2 ( cos sin )]eh x y g x y f x y   
       (16) 

( , ) ( , )sin[2 ( cos sin )]oh x y g x y f x y   
        (17) 

 

Where ( , )g x y  is a 2D Gaussian function while f and   are the central frequency and the orientation that 
define the location of the channel in the frequency plane. For every central frequency (power of 2), filtering is 

performed for various angles , this way resulting into a number of images. The feature vector is then the 
concatenation of the means and standard deviations for all images. Similarly, the mean and standard deviation 
of five low resolution levels acquired using the 2D wavelet transform are used for matching.  



 

DRDC CSS CR 2011-29 
 

 
The Euclidean distance is used to associate an input and a pre-enrolled iris, at the matching stage. This system 
was tested on 160 iris images from 16 different subjects. The overall recognition rate was 93.8%. 

  
In 2001 Lim et al. [6] proposed an improvement on prior feature extraction methodologies with the use of the 2D 
Haar wavelet for the exploration of texture characteristics of the iris. A preprocessing stage performed operations 
such as iris localization and normalization. Localization was based on edge detection and normalization was 
suggested by fixation of the distance between the detected inner and outer boundaries of the iris.  
 
The preprocessed image is decomposed four times with the Haar transform, and features are selected from the high 
pass sub-bands (HH4, HH3, HH2 and HH1). More specific, the HH4 sub-band was retained for classification while 
only the average was used for sub-bands HH3, HH2 and HH1. To control space and computational effort, the feature 
vector was quantized into binary values via a simple sign rule i.e., positive values were represented by 1 while 
negative by 0.  
 
For classification, a competitive neural network was proposed (LVQ). The reason for this choice was that, compared 
to other leaning networks, LVQ is faster in training. However, the performance of the LVQ is prune to initial weight 
vectors. To address this problem, the authors of [6] proposed a novel initialization process by which initial vectors 
are located at the boundaries of each class.  
The performance of the proposed system was tested on 6000 iris images from 200 volunteers. The overall 
recognition rate achieved was 99.3%. 
 
The most widely deployed algorithm for iris recognition was proposed by Daugman [7-11] based texture 
characteristics of the iris, explored through a 2D wavelet decomposition procedure.  
 
The preprocessing step of Daugman’s algorithm includes image focus assessment and iris localization. In order to 
determine if the image is usable for feature extraction, the spectral power in the middle and upper frequency bands 
of the 2D Fourier transform is examined. This assessment is rather performed during the acquisition stage, where the 
goal is to acquire an image for which these quantities are maximized.  
 
Daugman also proposed a very effective operator that can be used to determine the boundaries of the iris and pupil. 
As opposed to other works, this operator does not assume that circular contours which surround these regions are 

concentric, and because of this the parameters of the two circles were defined separately. For an image ( , )I x y , the 
operator is defined as follows: 
 

( , , )
, ,

( , )
max ( )

2o o
o o

r x y
r x y

I x y
G r ds

r r 



 

        (18) 
 

Where 
( )G r  is a smoothing function such as a Gaussian of scale . Essentially, this operator behaves as a 

circular edge detector that localized both the iris and the pupil.  
For feature extraction Daugman [7] proposed a 2D wavelet demodulation algorithm. More specific, the proposed 
wavelets were Gabor filters: 
 

2 2

2 2

1 1
( , , ) exp cos(2 ( cos sin ))

2 2x y x y

x y
G x y f f x y  

   

  
            (19) 

 

Where f the frequency of the sinusoidal is function, x and y are the space constants of the Gaussian envelopes 

and  is the orientation of the Gabor filter.  
The encoding is essentially a phase quantization procedure which identifies in which quadrant of the complex plane 
each phasor lies. Encoding can be described through: 
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   (20) 
 

Where {Re,Im}h
 is a complex valued bit is whose real and imaginary parts are either 1 or 0 depending on the sign of 

the integral.   and  are the multiscale wavelet size parameters, and 0( , )or 
represent the polar coordinates of 

each region of the iris for which the phasor coordinates {Re,Im}h
 are computed. In total, 2048 phase bits (iris code) 

are computed for each iris. 
A test of statistical independence was also proposed by the same author that estimates the similarity (or difference) 
between two 2048 bit streams. This test is based on simple XOR operations that return 1 if the two bits under 
consideration are different.  
In addition to the iris code, each iris is accompanied by a mask of the same length that signifies parts which parts of 
the code represent occlusion information. The goal is to test independence without taking into account occluded 
portions of the iris.  

For two iris codes codeA  and codeB , and for the respective masks m askA  and maskB the following measure 
of dissimilarity was proposed by Daugman [7]: 
 

( )codeA codeB maskA maskB
HD

maskA maskB

  



      (21) 

 
Which is the Hamming distance, a well known measure of dissimilarity between two binary streams. The HD 
between two iris codes from different subjects should be normally distributed with a mean of 0.5. HDs from 
comparison of 4258 different iris images were computed (over 9.1 million comparisons) from individuals in the 
U.K., U.S.A., Japan and Korea. The observed mean HD was 0.499 with a standard deviation of 0.0317. Figure 78 
provides a comparison of the above mentioned approaches with respect to preprocessing, feature extraction, 
classification algorithms and performance.  
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Figure 78: Comparison of iris recognition algorithms 



 

 

C.2 Iris Recognition Standards 
 
ISO/IEC 19794-6: 2005 Biometric data interchange format - Part 6: Iris image data specifies two alternative 
image interchange formats for biometric authentication systems that utilize iris recognition. The first is based on a 
rectilinear image storage format that may be a raw, uncompressed array of intensity values or a compressed format 
such as that specified by ISO/IEC 15444. The second format is based on a polar image specification that requires 
certain pre-processing and image segmentation steps, but produces a much more compact data structure that 
contains only iris information. 
 
ISO/IEC TR 19795-3: 2007 Biometric performance testing and reporting -- Part 3: Modality-specific testing 
describes the methodologies relating to these modality-dependent variations. It presents and defines methods for 
determining, given a specific biometric modality, how to develop a technical performance test. In biometric 
performance testing and reporting, careful consideration needs to be given to the characteristic differences of each 
modality (fingerprint, face, iris, etc.). These differences naturally require variations within the general methodology 
defined in ISO/IEC 19795-1. ISO/IEC TR 19795-3:2007 
 
NISTIR 6529-A Common biometric exchange formats framework (CBEFF) relates to all biometric modalities. 
It describes a structure and set of metadata elements necessary to support exchange of biometric information in a 
common way. 
 
ANSI INCITS 358-2002 [2007] (Initially developed by the BioAPI Consortium, Reaffirmed 2007) - American 
National Standard for Information technology for Information Technology – The BioAPI Specification 
specifies the Application Programming Interface and Service Provider Interface for a standard biometric technology 
interface. It is beyond the scope of this specification to define security requirements for biometric applications and 
service providers, although some related information is included by way of explanation of how the API is intended 
to support good security practices. The BioAPI is intended to provide a high-level generic biometric authentication 
model; one suited for any form of biometric technology. The standard covers the basic functions of Enrollment, 
Verification, and Identification, and includes a dataset interface to allow a biometric service provider (BSP) to 
manage the Identification population for optimum performance. It also provides primitives that allow the application 
to manage the capture of samples on a client, and the Enrollment, Verification, and Identification on a server. 
 
ANSI INCITS 398-2008 (Revision of ANSI INCITS 398-2005) American National Standard for Information 
Technology – Common Biometric Exchange Formats Framework (CBEFF) specifies a common set of data 
elements necessary to support multiple biometric technologies and to promote interoperability of biometric-based 
application programs and systems by allowing for biometric data exchange. This standard (revision of ANSI 
INCITS 398-2005) specifies a common set of data elements necessary to support multiple biometric technologies 
and to promote interoperability of biometric-based application programs and systems by allowing for biometric data 
exchange. These common data elements can be placed in a single file, record, or data object used to exchange 
biometric information between different system components and applications.  
 
This standard specifies the biometric data elements. These elements are assembled into data structures defined by 
CBEFF patron format specifications or standards. Each patron format specification that conforms to CBEFF defines 
which CBEFF data elements are present in its format and how the data elements are extracted and processed (details 
such as the data encoding scheme are the responsibility of the CBEFF patrons). The biometric data transported in a 
CBEFF structure can represent processed or unprocessed (raw) data. This standard itself specifies two Patron 
Formats (Patron Format A and B, see Annexes A and B). Annexes C through F document patron formats that have 
been specified external to this standard, as follows: C. The BioAPI BIR, D. The NIST PIV CBEFF Patron Format 
specified in NIST SP 800-76, Feb 1, 2006, E. The ICAO Logical data Structure (LDS), F. The Type 99 record 
specified in the revision of the ANSI/NIST-ITL 1-2000 standard (ANSI/NIST-ITL 1-2007, “Data Format for the 
Interchange of Fingerprint, Facial, & Other Biometric Information”). CBEFF does not specify the content or format 
of the actual biometric data contained within a CBEFF biometric data record. Protection of the privacy of 
individuals from inappropriate dissemination and use of biometric data is not in the Scope of this standard. 
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Annex D Fingerprint Recognition Techniques and Standards 
 

D.1 Fingerprint Algorithms and Templates 
 
Feature extraction from fingerprint images may operate on three distinct levels:  
 
Level 1 features describe the overall ridge patterns i.e., the flow and direction of lines in the image. Level 2 
fingerprint features are more detailed as they describe the various ridge path deviations such as ridge endings or 
splits (bifurcation). Accordingly, level 3 fingerprint features describe ridges in even greater detail, using information 
such as the width, shape, pores and other. All three levels have been explored for biometric recognition, with level 2 
being the most widely deployed. For the purpose of this report, feature extraction algorithms are categorized as 
pattern-based or minutiae-based. Essentially, the first falls under level 1 features, and the latter under level 2. From a 
pattern recognition point of view, pattern-based approaches process the fingerprint image holistically, while 
minutiae patterns describe mostly local characteristics. 
 
A great challenge in fingerprint recognition is the design of templates that are robust to elastic distortion. In 
addition, approaches that rely on minutiae points require perfect sensor readings, otherwise fake minutiae points will 
be generated by the algorithms.  
 
To address these issues, Xie et al. [12] proposed a fingerprint template based on ridge patterns, which means that the 
fingerprint image can be processed holistically, without the need of minutiae points detection.  
 
The first step in the study of fingerprint patterns is the extraction of the skeleton ridge image out of the raw sensor 
output. A typical solution is by Maio et al. [15], whereby the progression of a ridge is examined until either a 
termination of intersection with other ridges. Eventually, a skeleton image is a binary image of lines running along 
the fingerprint ridges.  
 
Once the skeleton fingerprint is available, the next step is labeling the ridges and examining the global structure. 

Suppose mP  and nP are the starting and ending points of an arbitrary ridge f  These points can then be either ending 

points, ridge bifurcations or broken ridges. Xie et al. [12] defined the curvature   of f as: 
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Therefore  is a measure of the ridge’s winding degree, thus naturally invariant to the image rotation or translation. 

To associate two ridges 1f  and 2f of lengths 1d and 2d the following conditions are examined: 
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Where 

1

2

d
k

d


 and 1th , 2th  are two thresholds. If the above two conditions are satisfied, the ridges under 
consideration are pre-matched. For every ridge, an associate table is designed by sampling it at a number of points, 
and associating every point with ridges in the upper and lower parts (using the two conditions). In Xie et al.’s work 
[12], fingerprint templates are a set of associate tables (one for every ridge), which in combination provide a 



 

 

structural picture of the fingerprint image. 
 
Marana et al. [13] proposed another ridge based fingerprint template, using the Hough transform. The framework 
can be described in four steps: 
 
 Design of skeleton image. During this step, a gray scale fingerprint image is converted into a thinned skeleton 

image (one pixel wide). This is achieved with the estimation of the orientation field and segmentation, as well 
as several heuristics that remove holes and speckles in the binary ridge map. 
 

 Ridge detection. During this step, the goal is to extract straight lines that approximate the fingerprint ridges. The 
Hough transform [16] is used to examine each pixel of a given ridge and increment an accumulator bin 
according to all the possible straight lines that pass through that pixel. The peaks of the accumulator array of 
pixels belonging to the same ridge indicate the parameters of the most likely straight lines that match that ridge 
in the image. 

 
 Fingerprint registration. In order to align an input and a gallery fingerprint image, rotation, translation and scale 

parameters are estimated. If the peak sets from the previous step are denoted as IS  and gS
 for the input and 

gallery images respectively, for every pair of peaks ( , )i iI G where i II S  and i gG S
a 1D rotation and a 

2D translation parameters are estimated. The scale factor was simply set to 1, since all images were acquired 
with the same sensor. 

 Fingerprint matching. Using every triplet of rotation and translation parameters
( , , )x y  

, the input image 
is aligned with the template image, and a matching score is calculated. The overall score of the pair is the 
maximum for all triplets.  
 
The match score is proportional to the number of detected ridges in the input and gallery images. The score is 
estimated using: 
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Where the ( , )i j -th element of matrix C  indicates how many pixels of the i-th ridge of the template fingerprint 

coincide with pixels of the j-th ridge of the template fingerprint. Also a and b  are estimated as: 
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Where 
( )nopR i

is the number of pixels of the i-th ridge of the input fingerprint. Only the ridges of one 
fingerprint image that intercept at least one ridge of the other image are considered in the computation, because 
they carry high entropy information.  
 

Khalil et al. [14] proposed a fingerprint verification algorithm based on statistical descriptors. The essence of the 
method is the statistical analysis of co-occurrence matrices obtained using a singular point on the orientation field. 
The algorithm is comprised of five steps: 
  



 

 

 Image enhancement. The short time Fourier transform is applied on overlapping windows of the fingerprint 
image for filtering. This analysis outputs the ridge orientation image, the energy image and the ridge frequency 
image. Then an angular filter is used for enhancement. 
 

  Detection of singular point. To detect this point, the image is divided into non-overlapping blocks of size 
16x16. The gradients on the horizontal and vertical directions are computed (using a Sobel mask), denoted as 

( , )xG x y  and 
( , )yG x y

 respectively. The ridge orientation of every pixel is then computed for the gradients 
within a window wx w  as  
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The ridge orientation is smoothened with a Gaussian low-pass filter. Next, the orientation image is converted 
into a continuous vector field as follows: 
 

cos(2 ( , ))x x y             
(23) 
 

sin(2 ( , ))y x y 
           (24) 

And a two dimensional Gaussian low-pass filter is applied on x  and y
.The singular point, is the point of 

maximum curvature, and it can be found using  
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 Extraction of sub-image. The detected singular points acts as the centre for determining a sub-image of size 

129x129 from the original fingerprint image.  
 

 Feature extraction. The gray level co-occurrence matrix (GLCM) is then used to extract texture characteristics 



 

 

from the sub-image. A co-occurrence matrix is specified by the relative frequencies ( , , , )P i j d   in which 

two pixels, separated by a distance d , occur in a direction specified by an angle  , one with gray level i and 

one with j . Several GLCMs are computed for a number of directions  and the template is based on four 
statistical features for every matrix: 
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Minutiae based approaches to fingerprint recognition are most typical and most widely deployed solutions. As 
opposed to pattern based approaches that examine the signal holistically and design texture or morphological 
templates, approaches based on minutiae points explore the finest characteristics of fingerprint images. Among such 
approaches, Jain et al. [17] fingerprint templates became very popular.  
 
A minutiae point can take the form of ridge ending or bifurcation. The location of such points on the fingerprint is 
what makes this modality unique. However, in order to extract this information there several steps that need to be 
followed, in order for the image to be appropriately pre-processed i.e., orientation field estimation and ridge 
detection. 
 
Jain at al. [17] suggested that the orientation field can be estimated in sixsteps as follows: 
 
 Divide the image in blocks of size w.  

 Compute the gradients xf  and yf  of each pixel for both directions.  

 Calculate the local orientation tables xV  and yV
 based on the gradients: 
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Estimate the orientation θ for every wxw block.  
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Apply a low-pass filter a block level.  
Compute the local ridge orientation O.  
 
Once the orientation field is estimated, a segmentation algorithm is applied to remove the background 
information of the image. A measure of local certainty is used to locate regions of interest:  
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A threshold on the certainty level ( , )CL i j allows the system to distinguish and remove background 
information which is redundant. 

 
The next step of the algorithm is the detection of pixels that belong to ridges. Detection is based on the gray 
level intensity of these pixels along a direction normal to the local ridge map. To do that, two masks are defined 
and convolved with the image: 
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These masks are able to adaptively identify the local maximum gray-level values along a local ridge direction. If 
both gray scale intensities are larger than a threshold, then the respective pixel is labeled as a ridge. Once a skeleton 
image is available, minutiae detection is the last step of the biometric template design. The algorithm for the 

detection is heuristic. For a pixel at a location ( , )x y known to be on a ridge the eight neighbors 0 1 7, , ....,N N N  
are examined.  
 

The pixel is classified as ridge ending if 
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. However, because 
this procedure is very sensitive to surrounding spikes due to noise or misinterpretation of pixels, a smoothing 
operation is first applied on the ridge skeleton to remove rapid spikes and to connect broken ridges. According to 
[17] the fingerprint template is comprised of the following information for every detected minutiae point: 
 
 Coordinate x 
 Coordinate y 



 

 

 Orientation 
 Associated ridge segment 
 
D.2 Fingerprint Standards 
 
ANSI/INCITS 381-2004 – Finger image based data interchange format specifies an interchange format for the 
exchange of image-based fingerprint and palm print recognition data. It defines the content, format, and units of 
measurement for such information. This standard is intended for those identification and verification applications 
that require the use of raw or processed image data containing detailed pixel information. 
 
ANSI/INCITS 377-2009 – Finger Pattern Data Interchange Format specifies an interchange format for the 
exchange of pattern-based fingerprint recognition data. It describes the conversion of a raw fingerprint image to a 
cropped and down-sampled finger pattern followed by the cellular representation of the finger pattern image to 
create the finger-pattern interchange data. The main points of difference between this revised version and the 
original standard are the inclusion of two new fields in the Record Header part of the Finger Pattern Data Record. 
These new fields are called Capture Equipment Compliance (see 6.2.4.2) and Capture Equipment ID (see 6.2.4.3). 
The revised standard also describes a method to store (optional) Core and Delta information in the Extended Data 
field of the Finger Pattern Data record (see 6.3.2.2). The above changes were done to improve the standard's 
usability from a commercial point of view and also to harmonize it with ANSI INCITS 378-2004, Finger Minutia 
Format for Data Interchange. 
 
ISO/IEC 19794-2:2005 – Biometric data interchange formats -- Part 2: Finger minutiae data specifies a 
concept and data formats for representation of fingerprints using the fundamental notion of minutiae. It is generic, in 
that it may be applied and used in a wide range of application areas where automated fingerprint recognition is 
involved. ISO/IEC 19794-2:2005 contains definitions of relevant terms, a description of how minutiae shall be 
determined, data formats for containing the data for both general use and for use with cards, and conformance 
information. Guidelines and values for matching and decision parameters are provided in an informative annex. 
ISO/IEC 19794-2:2005 specifies the fundamental data elements used for minutiae-based representation of a 
fingerprint; three data formats for interchange and storage of this data: a record-based format, and normal and 
compact formats for use on a smart card in a match-on-card application; optional extended data formats for 
including additional data such as ridge counts and core and delta location. ISO/IEC 19794-2:2005 provides for 
interchange of finger minutiae data between sensing, storage and matching systems. 
 
ISO/IEC 19794-3:2006 – Biometric data interchange formats -- Part 3: Finger pattern spectral data, the finger 
pattern spectral data interchange format, specifies requirements for the representation of local or global spectral data 
derived from a fingerprint image. The format is designed to provide flexibility in the choice of spectral 
representation in that spectral components may be based on quantized co-sinusoidal triplets, Discrete Fourier 
Transformations or Gabor filters. The format also allows for a variable number of spectral components to be 
retained, which enables data representations in a form that is more compact than storage of the entire fingerprint 
image. ISO/IEC 19794-3:2006 provides example data records for each of the spectral representations. 
 
ISO/IEC 19794-4:2005 – Biometric data interchange formats -- Part 4: Finger image data specifies a data 
record interchange format for storing, recording, and transmitting the information from one or more finger or palm 
image areas within an ISO/IEC 19785-1 CBEFF data structure. This can be used for the exchange and comparison 
of finger image data. It defines the content, format, and units of measurement for the exchange of finger image data 
that may be used in the verification or identification process of a subject. The information consists of a variety of 
mandatory and optional items, including scanning parameters, compressed or uncompressed images and vendor-
specific information. This information is intended for interchange among organizations that rely on automated 
devices and systems for identification or verification purposes based on the information from finger image areas. 
Information compiled and formatted in accordance with ISO/IEC 19794-4:2005 can be recorded on machine-
readable media or may be transmitted by data communication facilities. 
 
ISO/IEC 19794-8:2006 – Biometric data interchange formats -- Part 8: Finger pattern skeletal data 
specifies the interchange format for the exchange of pattern-based skeletal fingerprint recognition data. The data 
format is generic, in that it may be applied and used in a wide range of application areas where automated 
fingerprint recognition is involved. The exchange format defined in ISO/IEC 19794-8:2006 describes all 



 

 

characteristics of a fingerprint in a small data record. Thus it allows for the extraction of both spectral information 
(orientation, frequency, phase, etc.) and features (minutiae, core, ridge count, etc.). Transformations like translation 
and rotation can also be accommodated by the format defined herein. ISO/IEC 19794-8:2006 supports the 
proliferation of low-cost commercial fingerprint sensors with limited coverage, dynamic range, or resolution. Thus it 
defines a data record that can be used to store biometric information on a variety a storage media (including, but not 
limited to, portable devices and smart cards). 
 
ISO/IEC 29109-2:2010 Conformance testing methodology for biometric data interchange formats defined in 
ISO/IEC 19794 -- Part 2: Finger minutiae data specifies elements of conformance testing methodology, test 
assertions, and test procedures as applicable to the biometric data interchange format standard relating to finger 
minutiae data (i.e. ISO/IEC 19794-2). It establishes tests of assertions of the structure of the finger minutiae data 
format as specified in ISO/IEC 19794-2:2005 (Type A Level 1 as defined in ISO/IEC 29109-1:2009), tests of 
assertions of internal consistency by checking the types of values that may be contained within each field (Type A 
Level 2 as defined in ISO/IEC 29109-1:2009), and tests of semantic assertions (Type A Level 3 as defined in 
ISO/IEC 29109-1:2009). ISO/IEC 29109-2:2010 does not establish tests of conformance of CBEFF structures 
embedding ISO/IEC 19794-2:2005 biometric data blocks (BDBs), tests of other characteristics of biometric products 
or other types of testing of biometric products (e.g. acceptance, performance, robustness, security), tests of 
conformance of systems that do not produce ISO/IEC 19794-2:2005 records, or tests for level 3 conformance 
testing. 
 
ISO/IEC 29109-4:2010 - Conformance testing methodology for biometric data interchange formats defined in 
ISO/IEC 19794 -- Part 4: Finger image data specifies elements of conformance testing methodology, test 
assertions, and test procedures as applicable to ISO/IEC 19794-4. ISO/IEC 29109-4:2010 establishes test assertions 
of the structure of the finger image data format as specified in ISO/IEC 19794-4:2005 (Type A Level 1 as defined in 
ISO/IEC 29109-1:2009), test asssertions of internal consistency by checking the types of values that may be 
contained within each field (Type A Level 2 as defined in ISO/IEC 29109-1:2009), tests of semantic assertions 
(Type A Level 3 as defined in ISO/IEC 29109-1:2009). ISO/IEC 29109-4:2010 does not establish tests of 
conformance of CBEFF structures required by ISO/IEC 19794-4:2005, tests of other characteristics of biometric 
products or other types of testing of biometric products (e.g. acceptance, performance, robustness, security), 
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Annex F Summary of Literature on PET Evaluation Results  
 

Figure 79 lists the results of each empirical study reviewed, sorted in ascending order by false rejection rate (FRR). 
FRR is the focus of this table because it generally represents the usability of the proposed method. Results are 
highlighted where a target of 1% FRR at 0.1% FRR was achieved. Some tests ran multiple trials and obtained 
multiple results. In such cases, optimal results are listed. The other metrics are listed at the value that was needed to 
achieve that level of FRR. In many cases, FRR and FAR were derived from a reported equal error rate (EER). 

Article Method Modality Mode = FRR FAR Bits 

Teoh et al. (2004) Multifactor Fingerprint 1:1 600 0.0% 0.0% 80 

Hirata and Takahashi (2009) Transform Vein 1:1 102 0.0% 0.0% - 

Chikkerur et al. (2008) Projection Fingerprint 1:1 188 0.0% 0.1% - 

Kanade et al. (2010) Multifactor Multimodal 1:1 1,750 0.11% 0.0% 210 

Al-Assam et al. (2009) Projection Face 1:1 80 0.2% 0.2% - 

Jin et al. (2009) Aggregation Fingerprint 1:1 800 0.2% 0.2% 4800 

Van der Veen et al. (2006) Fuzzy Face 1:1 96 0.25% 0.25% - 

Hao et al. (2006) Multifactor Iris 1:1 700 0.47% 0.0% 140 

Linnartz and Tuyls (2003) Fuzzy Ear 1:1 360 0.6% 0.05% 343 

Yang et al. (2010) Projection Fingerprint 1:1 700 0.6% 0.1% 144 

Chen et al. (2009) Parametric Pseudo-sig 1:1 350 1.0% 1.0% - 

Boult et al. (2007) Biotoken Fingerprint 1:1 2,800 1.2% 1.2% - 

Shi et al. (2008) Transform Fingerprint 1:1 800 1.35% 1.35% - 

Ŏrencik et al. (2008) Fuzzy Fingerprint 1:1 360 1.5% 0.0% - 

Zheng et al. (2006) Fuzzy Iris 1:1 150 1.5% 1.5% - 

Nandakumar and Jain (2008) Fuzzy Multimodal 1:1 - 1.8% 0.0% 224 

Ang et al. (2005) Transform Fingerprint 1:1 800 2.0% 2.0% - 

Nagar et al. (2010) Aggregation Fingerprint 1:1 - 2.0% 2.0% - 

Ouda et al. (2010) Projection Iris 1:1 80 2.2% 2.2% 450 

Sutcu et al. (2008) Aggregation Fingerprint 1:1 1,035 2.7% 2.7% 30 

Scheirer and Boult (2009) Biotoken Fingerprint 1:1 - 3.0% 0.0% 256 

Sutcu et al. (2007) Fuzzy Face 1:1 1,216 3.8% 0.7% 108 

Ye et al. (2009) Homomorphic Iris 1:N 1,948 4.0% 0.0% 1024 

Monrose et al. (2001b) Multifactor Voice 1:1 250 5.0% - 60 

Nagar et al. (2009) Fuzzy Fingerprint 1:1 - 5.0% 0.01% - 

Takahashi and Hirata (2009) Transform Fingerprint 1:1 181 5.0% 0.2% - 

Barni et al. (2010) Homomorphic Fingerprint 1:N 408 6.5% 6.5% 128 

Vielhauer et al. (2002) Parametric Signature 1:1 - 7.05% 0.0% - 

Nandakumar et al. (2007) Fuzzy Fingerprint 1:1 800 10.0% 0.0% 70 

Maiorana et al. (2008) Transform Signature 1:1 16,500 10.29% 10.29% - 

Álvarez et al. (2009) Fuzzy Iris 1:1 175 11.1% 0.67% - 

Uludag and Jain (2006) Fuzzy Fingerprint 1:1 800 15.5% 0.0% - 

Ballard et al. (2008) Multifactor - 1:1 - 17.7% 17.7% - 

Teoh et al. (2007) Projection Face 1:1 600 18.1% 18.1% 127 

Monrose et al. (2001a) Multifactor Keystroke 1:1 188 22.9% - 16 

Hao and Chan. (2002) Parametric Signature 1:1 750 28.0% 1.2% 40 

Clancy et al. (2003) Fuzzy Fingerprint 1:1 - 30.0% 0.0% - 

Freire-Santos et al. (2006) Fuzzy Signature 1:1 16,500 57.3% 0.32% - 

Chen and Chandran (2007) Transform Face (3D) 1:1 - 66.0% 0.26% 64 
Figure 79: Summary of PET Test Results 
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